Offloading Embedding Lookups to Processing-In-Memory for Deep Learning Recommender Models

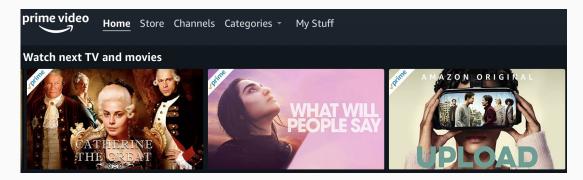
EuroPar 2024- ABUMPIMP Niloofar Zarif, Justin Wong, Alexandra Fedorova Aug 2024

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

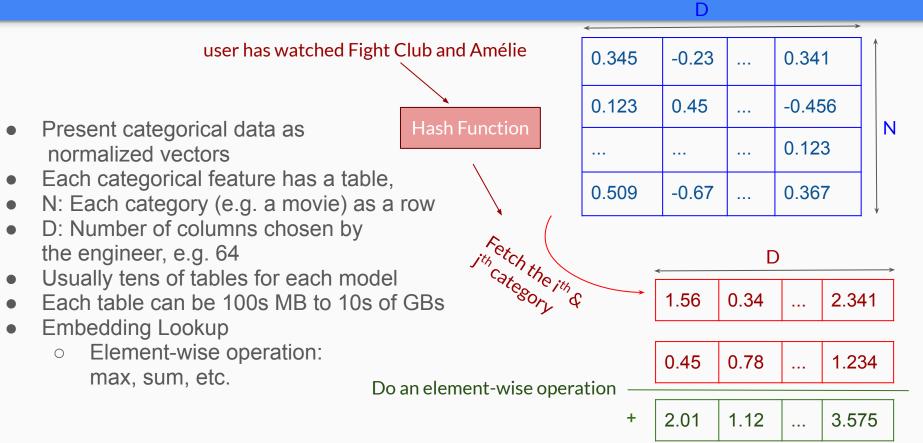
UBC Systopia Research Group

Recommender Models

- Recommender Systems in our everyday life: Facebook Marketplace, Google Ads, Netflix
- Deep Learning for Recommender Models
- Different from DNN or RNN
- Features:
 - Numerical
 - Categorical
- Embedding Layers

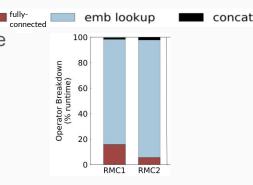


Embedding Layer



DLRM Inference Workload

- DLRM: Meta's recommender system
 - MLP
 - Embedding Layer
- Low Inference Latency important -> CPU prefered
- There are models with more than 80% of execution time of each inference cycle spend on embedding lookup^[1]
- Embedding lookups:
 - Very Irregular memory accesses -> higher MPKI and lower IPC
 - Low computational intensity -> lower FLOPS
- PIM-Rec:
 - Use Processing-In-Memory for Embedding Lookups

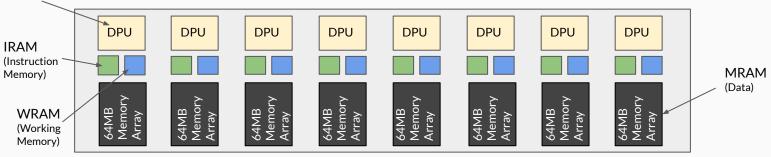


UPMEM PIM Solution

- Perform computations right where the data lives and avoid memory wall (limited memory bandwidth)
- This approach has been used before but with specialized hardware:
 - Do this with the first commercially available PIM solution, that is a drop-in replacement for existing DRAM
- UPMEM DRAM: Delivered as standard DDR4 DIMM modules

UPMEM PIM Architecture

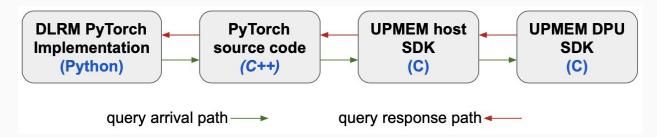
- Constraints:
 - No cross-dpu memory sharing
 - Cannot process floating point
- Huge bandwidth potential
- Each DIMM, 2 ranks and each rank 64 DPUs



UPMEM PIM DRAM Chip

Design Challenges

- Minimal implementation overhead
 - Python vs. C memory management
- No inter-DPU communication
- No floating point operation



PIM-Rec Design

Loading embedding tables to UPMEM memory

- Break tables into columns (16,32 or 64)
- Each column copied to 1 DPU
- Turn 32-FP values into 32-int
- Pre-processing done just once

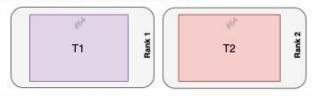
- Receiving lookup query
 - Break down for each table
 - Copy to corresponding DPUs
 - Aggregate on host-side
 - Turn 32-int back into 32-FP

case 1: embedding table with 16 columns

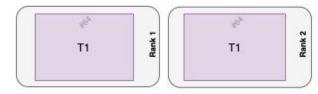


case 2: embedding table with 32 columns

case 3: embedding table with 64 columns



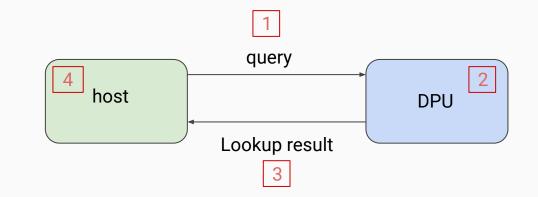
case 4: embedding table with 128 columns



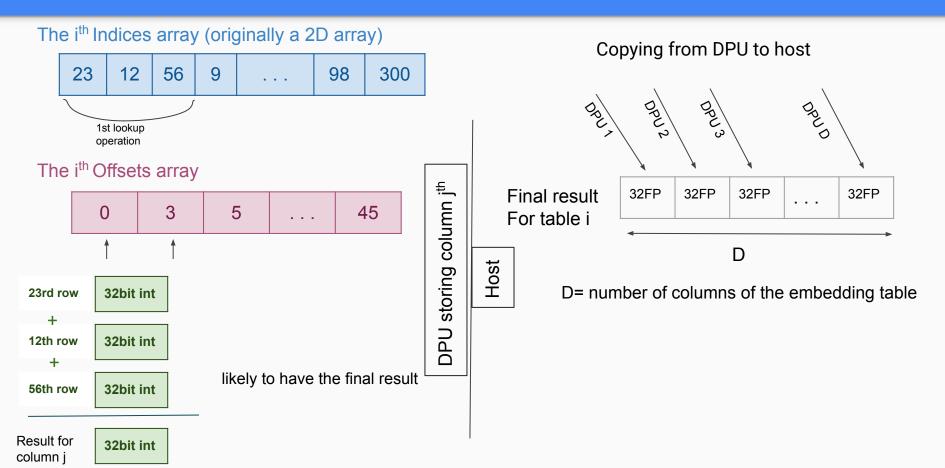
PIM-Rec Design(cont.)

- Loading embedding tables to UPMEM memory
 - Break tables into columns (16,32 or 64)
 - Each column copied to 1 DPU
 - Each table copied to at least 1 rank
 - Turn 32-FP values into 32-int

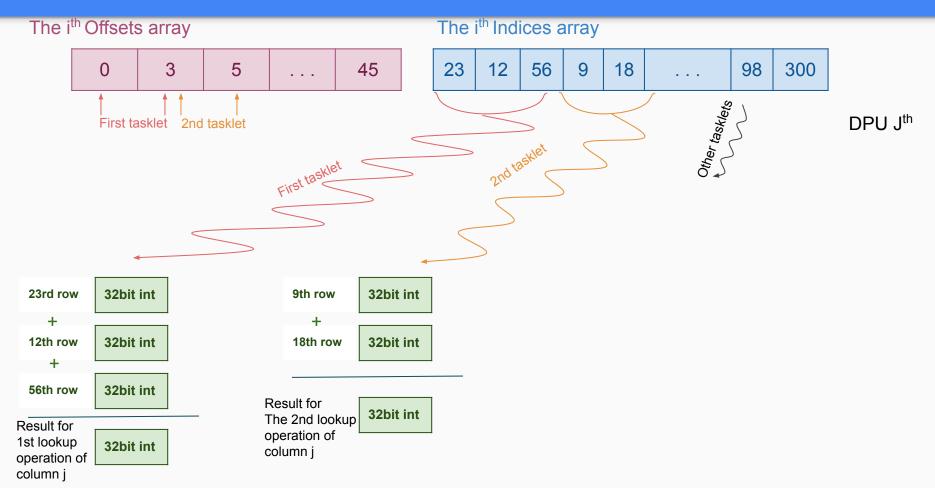
- Receiving lookup query
- 1. Break query and copy to DPUs
 - a. Parallel transfers
- 2. Process in DPU and store in mram
- 3. Copy from MRAM (DPU) to host
- 4. Turn 32-int back into 32-FP



Lookup Processing in DPUs



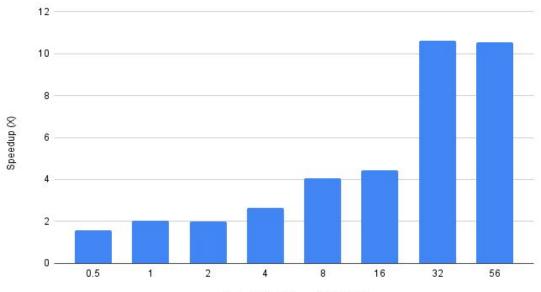
Parallelism in DPUs: Tasklets



Experimental Results

Speedup

- 2048 DPUs
 - 32 embedding tables
 - 64 columns per table
- 0.5 to 56 MB data per DPU
 - 125K to 13.9M 32bit integers
- 30 KB queries
 - Batch size of 64
 - ~120 lookup operation per batch
- 1 to 114 GB total embedding data
 - 32 tables
 - \circ 0.5 to 56 MB per table

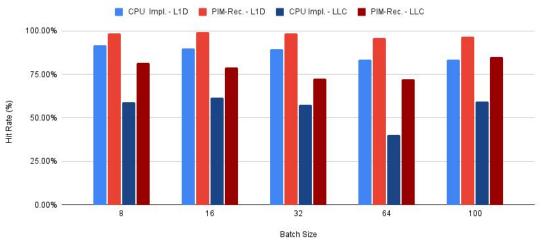


Embedding Data per DPU (MB)

Cache Hit Rate

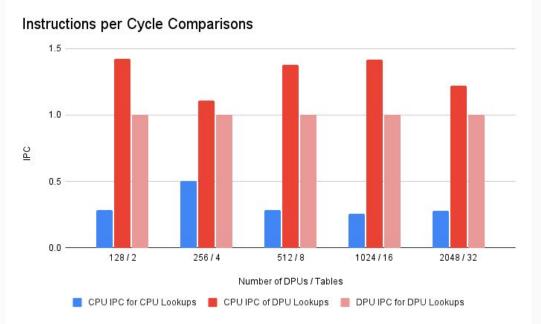
- 2048 DPUs
 - 32 embedding tables
 - 64 columns per table
- 2 MB data per DPU
 - 500K 32bit integers
- 3.8 to 48 KB queries
 - Batch size of 8 to 100
 - ~120 lookup operation per batch
- 4 GB total embedding data
 - o 32 tables
 - 2 MB per table

L1D, LLC Hit Rate with Varying Batch Size



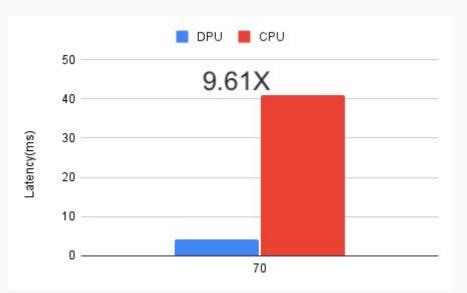
Processor Performance

- 128 to 2048 DPUs
 - 2 to 32 embedding tables
 - 64 columns per table
- 2 MB data per DPU
 - 500K 32bit integers
- 30 KB queries
 - Batch size of 64
 - ~120 lookup operation per batch
- 256 MB to 4 GB total embedding data
 - \circ 2 to 32 tables
 - 2 MB per table



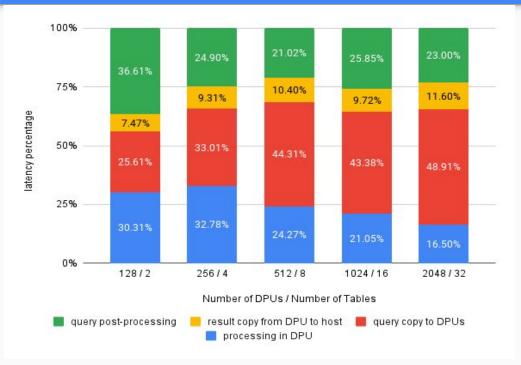
Favourable Workload

- 4480 DPUs
 - 70 embedding tables
 - 64 columns per table
- 400 KB data per DPU
 - 100K 32bit integers
- 4 KB queries(32bit int)
 - Batch size of 16
 - ~ 64 lookup operation per batch
- 448 MB total embedding data
 - 64 tables
 - 6.6 MB per table



Latency Breakdown

- 128 to 2048 DPUs
 - 2 to 32 embedding tables
 - 64 columns per table
- 2 MB data per DPU
 - 500K 32bit integers
- 30 KB queries
 - Batch size of 64
 - ~120 lookup operation per batch
- 256 MB to 4 GB total embedding data
 - \circ 2 to 32 tables
 - 2 MB per table



Conclusion

- PIM-Rec offers up to 10.5X speedup
- CPU used more efficiently, higher IPC
- Cache used more efficiently, higher LLC and L1D hit rate
- UPMEM PIM lookups exhibit promising scalability

Further experimental results:

MSc Thesis on UBC library

Thank you!

Special Thanks to Prof. Alexandra(Sasha) Fedorova and Justin Wong!

Questions?