ABUMPIMP 2024

PIM Lucene

Copyright UPMEM® 2024

Lucene Primer

Copyright UPMEM® 2024

Lucene Primer
What is Index Search ?

Inverted index

® Anindex search engine identifies items in a text database
that correspond to keywords specified by the user (web
pages, text documents, e-commerce product ...)

® Aninverted index is built and maintained in order to
answer queries with low latency / high throughput

—
=
c
[d)
S
)
[0)

(2}

® Apache Lucene is a powerful and popular open-source
search library written in Java

Segment 2

e UPIS: Engine for exact phrase match: > 600 queries/sec
with full PIM server on wikipedia

3/25 Copyright UPMEM® 2024 u
mem

Lucene for DPU

Copyright UPMEM® 2024

Lucene for DPU

Whatis PIM Lucene ?

e PIM Lucene is a project to create an extension of Lucene to offload specific queries to UPMEM PIM

e Public on github: https://github.com/upmem/pim-lucene

e The objectives are :

Create a non-intrusive extension of the Lucene code base

Provide an option to use PIM for specific query types or part of the query execution
Provide better query throughput / lower energy consumption

Do not impact regular Lucene’s functionality or performance (it is an extension)
The first query being implemented is the PhraseQuery

© O O O O

5/25 Copyright UPMEM® 2024 u
mem

https://github.com/upmem/pim-lucene

Lucene for DPU

PIM Lucene Index Architecture (1)

® Our design choice is to keep the original Lucene index untouched
A new index specific to PIM is stored in the PIM memory

® A PIMIndexWriter is the interface for writing a Lucene index that also contains the PIM index

First create the normal Lucene index

Then read the Lucene index and create the PIM index

The postings of each term are spreaded over the DPUs based on the document ID
Each DPU contains a subset of documents

- doc:2 pos:5 | pos:12 | doc:6 | pos:7 | pos:22 | doc:9 pos:1 pos:8

o O O O

N\ J J J
Y Y Y
DPU1 DPU2 DPU1
6/25 Copyright UPMEM® 2024

up

mem

Lucene for DPU

PIM Lucene Index Architecture (2)

e The PIM index stores the term bytes sorted (difference with UPIS project)
o This will enable to handle prefix or fuzzy queries
e The PIM index for one DPU consists in four parts:
o Afield table that associates to each field the address where to find the field's term block table
o Alist of term block table for each field, used to find the block where a particular term should be searched
o Ablock list where each block is a list of terms of a small and configurable size meant to be scanned linearly
O The postings lists (delta-encoded)

e Ex with one field “body” containing 6 terms “Apache”, “Lucene”, “Search”, “Table”, “Term”, “Tree”, block size=3

Field Table Block Tables Block List

Apache

Table Search [——
\ posting lists

Term —>

y

Lucene ———

Tree >

7/25 Copyright UPMEM® 2024 u p
mem

Lucene for DPU

Searching Consecutive Words

1. Document selection: Find next DID where all words from the query are present
2. Word alignment: Check if words are found consecutively in this DID
3. Repeat the process until all documents have been looked into

Cycle through the DB

Query
{word1, .., word5}
Write input 5 Document Selection Word Alignment Collect
‘ results
! DPU workload List of docs with
e word positions
8/25 Copyright UPMEM® 2024 u

mem

Lucene for DPU

PIM Lucene Query Architecture

e Create a specific query class in Lucene for each query to be executed on PIM

o Forinstance PimPhraseQuery object
The system may decide to run the query on PIM or with standard Lucene index
A global PIM manager collects the queries coming from different searcher threads
Queries are sent as a batch to the DPUs and results are collected => [docld, freq]
The CPU uses the freq and the norm (stored on disk) to compute the score

queries broadcast query batch
>

—————»

results aggregate results

up

9/25 Copyright UPMEM® 2024
mem

Lucene for DPU

Code Example : Indexing

Create a PimIndexWriter, the PimConfig specifies PIM system parameters

Analyzer analyzer = new StandardAnalyzer();
Directory indexDirectory = new MMapDirectory(Paths.get(index));
Directory pimIndexDirectory = new MMapDirectory(Paths.get(index + "/dpu"));

IndexWriterConfig iwc = new IndexWriterConfig(analyzer);
'/ provide a directory for pim index and a pim config to the PimIndexWriter constructor

iter writer = new PimIndexWriter(indexDirectory, pimIndexDirectory, iwc, new PimConfig(nbDpus, 16));

Closing the writer will commit the standard Lucene index and create the PIM index

writer.close();

10/25 Copyright UPMEM® 2024 u p

mem

Lucene for DPU

Code Example : Search

Create index reader, open and load the PIM index

IndexReader reader = DirectoryReader.open(MMapDirectory.open(Paths.get(index)));
IndexSearcher searcher = new IndexSearcher(reader);

// load PIM index from PIM directory
PimSystemManager.get().loadPimIndex (MMapDirectory.open(Paths.get(index + "/dpu")));

Build the PimPhraseQuery and search the index

PimPhraseQuery.Builder builder = new PimPhraseQuery.Builder();
/*¥ add terms */

builder.add(new Term("body", "Apache"), 0);

builder.add(new Term("body", "Lucene"), 1);

PimPhraseQuery query = builder.build();
/* search */
TopDocs results = searcher.search(query, 100);

11/25 Copyright UPMEM® 2024 u p
mem

Lucene for DPU

Lucene Segments

Lucene uses the concept of index segments which allows for dynamic updates of the index
Each segment is the index for a subset of all documents (postings, norms etc.)

An index commit creates a new segment which contains the documents added for the commit
A segment is immutable, deleted documents are marked as such but the data stays in the index
Periodically, segments are merged and documents actually deleted

K Lucene Index \ new index commit
index.addDocument(...)
-

index.addDocument...)
index.commit();

doc:100 doc:200 doc:300

up

mem

12/25 Copyright UPMEM® 2024

Lucene for DPU

Lucene Segments Support for DPU

e Our design choice is not to support incremental updates of the PIM index for now
o After each commit the complete PIM index is re-generated
o This is sufficient for scenarios where the index updates are infrequent

e Still, high-level Lucene APIs expects the results to be provided on a per segment basis (in order)
O Modifying this would mean significantly changing Lucene’s architecture

e Solution: Results of all segments are cached and returned on demand on a per-segment basis

queryl segmentl @ broadcast queryl@

' D
queryl results

]
results queryl/segmentl

queryl segment2 @

' 2
]
results queryl/segment2

Cache
queryl segmentl
queryl segment2
queryl segment3

13/25 Copyright UPMEM® 2024

up

mem

Lucene for DPU

Scatter-Gather Transfer of Results

e Results on the host are scattered: each DPU provide results for different queries and segments
e We need to return to each search thread a reader for results of a particular query/segment
e |tis possible to have all readers make “scattered” reads from the same buffer but better is to use

scatter-gather transfers

DPUI1 results DPU2 results
doc:2 | doc:16 | doc:5 | doc:19 doc:3 doc:6 | doc:12 | doc:15 segment1 : doc:0 to doc:9
N N y N y segment2 : doc:10 to doc:19
Y Y Y Y
queryl query2 queryl query2
@ Scatter-qgather transfer
Host results doc:2 doc:3 doc:6 doc:16 | doc:12 | doc:5 | doc:19 | doc:15
N\ J\ J N\ J
Y Y Hf_/ Y

14/25

queryl:segmentl

Copyright UPMEM® 2024

queryl:segment2 query2:segmentl query2:segment2

up

mem

Lucene for DPU

Tasklets Load Balancing

e The work on a DPU needs to be parallelized between different tasklets
e Astraightforward way is to parallelize over queries: each tasklet handles a different query

o Does not work well for small batches of size less than the number of tasklets
o The amount of work can greatly varies between queries => bad load balancing

e Abetter solution is to create “PIM-index segments” which are defined by a document id range

e Each tasklet then searches a segment of each query

e Small overhead in PIM-index to store DPU index skip information (delta-encoded positions)

DPU1 term “Lucene” postings:

10 documents in index
DPU segmentl range=1..5
DPU segment2 range=6..10

- doc:2 pos:5 | pos:12 | doc:6 pos:7 | pos:22 | doc:9 pos:1 pos:8
N\ J
' Y
DPU1 segmentl1 DPU1 segment2
=> taskletl => tasklet2
15/25 Copyright UPMEM® 2024

up

mem

Benchmarks

Copyright UPMEM® 2024

Benchmarks

Benchmarking Setup

UPMEM Benchmark Server (PIM+CPU vs. CPU compute)

Component | Details

CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz, 16 cores,
22MB cache, 100W TDP
RAM Samsung 32GiB 2400 MHz M393A4K40CB2-CTD DIMM

PIM Memory | DDR4-2400 PIM Module (16 x 512MB/8DPU) @ 350MHz

English wikipedia dataset - 20M+ files - over 240GB of text
1036 queries extracted from Lucene nightly benchmarks

17/25 Copyright UPMEM® 2024

QTY
(PIM)

16

up

mem

Benchmarks

Profiling View (64 Search threads)

18/25

N f ey Qo oo Mo Qoo W oo Neeu G Mpe sy JY - fopus
| o B Qs Q¢ Wooe WY o Bore Mo Qi ouss Qfd s I
e Qeoes e Joous Wo Wore Moo Wope WoRforesy We o |
e Qoon Qo oo B Ro By Pou Qoo s e o)
o W oves B Woves W e [oous Yoo Wove Jif o cousy W< |
| | T | N TN EN TS EN R e N _
¢ Wooes B¢ Wooes W Qove Jco Rovos Wealf ooy Blc foves |
o Wooes B Woevos W Joous Wfor Weve W< Qresy B¢ §opes |
[Qoo Ble Weoosy Po Qo Wi Moo Wl cousy PHe Popes B
1o § oo Mo Wcoes Wo Wooe Wioo Wcee Jfoff ooy I Moo
|) I
1o Wooos Qo Wovs Bd Wovo W oo WPl ooy B W rs |
| (N T | T N T N |) T N
¢ Qoo M Qove Mo W o W Holfors Qe Qo |
Lo Qoo Jo Qoo W0 Woeve W< Moo QHoRY coosr Jfc foves |l
¢ Moo Qe Wows Yo Woees Mo Moo W< Qe e B Wovee |
o Qoo Mo Wevuo W Weou Woo Wosu ol ooy e Wovae |
e Noves Bl §eous Blo Weos Wov Weoo Mo oous QYo Woous
e Qo W Mo Je Qo o Mo W QYo Qe Qo
¢ Boos Bd Wcpae Jljo Qopa WId Woe JcRfceesy BRd Jeus |
| N N | N N N T N) T N T |
¢ Moo Qe Wooos We Moo WIo Moo WO R oesy Bfe Woous |
| I | | TN N |
e Revis R Wovas Ba R oo Wop Joou [ol sy B¢ cous |
¢ Qoo B Woos Yo Wesus Woo Weoe Moffcou s QY B ces |
e Qcoos Jc Qo e Wovo Wlco W coe W) oo BTG Qoo |
o Joous BYo Neoowr Qo Wevos fco Boou W< sy e oo |
e | oo B¢ Qiooes WY Wevos Q¢ Qoo MW cousy B Jovu: |
| N e SN N
Yo Yoo P Wevos e oo f o Beou JfoRfoo sy P Jous |
| T | N T || N N S 1 T N N |
e Qoo o Yoo Wo Yoo o Qoo Jfoff oy s Poous |
O T | s S | e

| N TN e TN | K
|0 EEE BEES O

I
110 X | 1 | X 1
¥ 28 | 2 1) (2 1 0 X8 | e [
—nmun-nl-n (o]

I\ 2]

IlIIII II
I N R G

@ cous il o §ous Hf ol cousy W d Wopus | Ill- I || 111
| ESITE | T | -I | mmn 1
¢ § oo Yo Yoo WFofiopesy lfd Woos N ol cousm. | .llﬂ I 111
e Qoo Jfc Qovee Wil 6] coue Jlf <) -I 1o fcooom Y1} cpusr. fI1d oo I o JHTRTI
[fopes W Wopus (i ¢ Y dpusy fld Wopus B B couom 1] mnn o IS HHTNIIE

O =8 o

(o e e | coos o Y cpoey. <]
¢ cos Qo Yopos Wd Qo |
o Qoves o Wooe Yo cooey Jif

CX3 gocxa o e | | Y | T | 1

S |) T N T | 1 I

| T | | TN | N O | O)

(0N | TN T | N m-nn 1]l

¢ Qs o Wopus oW cousy IO o Wopae [l cousm 1R couon (I 0 R oo 1o UL III\

| oo Q¢ Wovooy B o B ousy o N cous. | III-IIIMII IIIIIIIIII 1]l
S| N | || G| N Y | | | | || e 11
oo Qo | cous WO ooy I ¢ loous | II!MIIIIIIH S
EES | S TR || T | N G | | | T | g |11 1
X ||| O | N T | N | | O R (1
N [N | T | T T | | T O I |

| N | TN | T N G | | G T | e O 11 10
[os W [vos W Wopoey Bl o W coos YT Y ooy ECR ooy Y cou Yoo I} < FRIINIHR
| 0 O | G | T N G | (| T e 1

| N Y | T | IO (N | IO (T S e 1 1

1 B8 T [T (O | N | O) I || O
| N T T | | | T (D T
(1N N N | T || N | TN | N T |
| T | | T (N I | | (O I | | I 1
o fcoos B¢ Wopoo W< Hcooey. JFd feous I ﬂlmlllmlﬂ oo L < LN
el e | oo Mol couer il ¢ Wovos BTG N oooevn Y dousy o N cous. 3 AUITMIN

¢ foous [f oo Y] coocs Jff o §orac [ffdou sy Y Illlﬂ o B ¢ m “h
T i o e W 1)

Copyright UPMEM® 2024

DPU execution is in
purple => it takes the
largest fraction of the
time

Load balancing OK
The time to read and
score the results is
shadowed by DPU

time

Batch size still varies

up

mem

Benchmarks

PIM-Lucene PhraseQuery Speedup

A 1thread A 8threads 32 threads A 64 threads
8,00
6,09

6,00
c
kel
©
KT
(O]
Q
£ 400
5
o
ey
D
>
(=
£ 200

0,00

10 100 1000 10000
ntopdocs
19/25 Copyright UPMEM® 2024

Two main observations

Speedup increases with number
of top docs

Speedup decreases with number
of searcher threads

up

mem

Benchmarks

Parallelism with Searcher threads

Throughput vs Number of threads - 100 top docs

B Standard Lucene [Standard Lucene exec32 PIM-Lucene
150
96,75
® 100 85,95 822
o 7457 72,96
§. 59,07
oy
()]
3
2 50 3494 37,95
= 2303 25,49
4 16,4
0 -..
1 2 4 8 16 32 64
nbthreads
20/25 Copyright UPMEM® 2024

When the number of
threads is low, parallelism
on one query makes a
difference

When using query-level
parallelism in Lucene (red
bars), the throughput is
better for low number of
threads

up

mem

Benchmarks

Performance vs Number of Topdocs

Throughput vs Number of top docs - 8 searcher threads
A PIM-Lucene A Standard Lucene

80
e Lucene shows a good

| & | acceleration when the
60 49"6; j\s“"og number of top docs
decreases
e Thisis because it uses a
25,49 lower bound to avoid
- checking all documents
20 ' 9,76 e Next step:implementing
the lower bound on DPU

63,72 64,78 63,67

40

Throughput (QPS)

10 100 1000 10000

ntopdocs

up

mem

21/25 Copyright UPMEM® 2024

Benchmarks

Lower Bound Synchronization

A 1lthread A 8threads 32threads A 64 threads
5,00
4,00
Q
]
©
[5)
(5]
Q.
)
= 3,00
Q
L
o
=
e
&
o 200
c
[«F]
(]
=
)
=
o 1,00
0,00
10 100 1000 10000
ntopdocs
22/25 Copyright UPMEM® 2024

This makes use of
the Parallel WRAM
access feature
Host maintains a
heap of the best
results
Acceleration with
low number of
topdocs has been
smoothened

up

mem

