
PIM Lucene

Copyright UPMEM® 2024

ABUMPIMP 2024

Lucene Primer

Copyright UPMEM® 2024

3/25 Copyright UPMEM® 2024

What is Index Search ?
Lucene Primer

Word 1

S
eg

em
en

t 1
S

eg
em

en
t 2

Doc 1

Doc 2

Doc X

Doc Y

Word 1

S
eg

em
en

t 1
S

eg
em

en
t 2

Doc 1

Doc 2

Doc X

Doc Y

Word 1

S
eg

m
en

t 1
S

eg
m

en
t 2

Doc 1

Doc 2

Doc X

Doc Y

Inverted index

● An index search engine identifies items in a text database
that correspond to keywords specified by the user (web
pages, text documents, e-commerce product …)

● An inverted index is built and maintained in order to
answer queries with low latency / high throughput

● Apache Lucene is a powerful and popular open-source
search library written in Java

● UPIS: Engine for exact phrase match: > 600 queries/sec
with full PIM server on wikipedia

Lucene for DPU

Copyright UPMEM® 2024

5/25 Copyright UPMEM® 2024

What is PIM Lucene ?

● PIM Lucene is a project to create an extension of Lucene to offload specific queries to UPMEM PIM

● Public on github: https://github.com/upmem/pim-lucene

● The objectives are :

○ Create a non-intrusive extension of the Lucene code base
○ Provide an option to use PIM for specific query types or part of the query execution
○ Provide better query throughput / lower energy consumption
○ Do not impact regular Lucene’s functionality or performance (it is an extension)
○ The first query being implemented is the PhraseQuery

Lucene for DPU

https://github.com/upmem/pim-lucene

6/25 Copyright UPMEM® 2024

PIM Lucene Index Architecture (1)

term:Lucene doc:2 pos:5 pos:12 doc:6 pos:7 pos:22 doc:9 pos:1 pos:8

DPU1 DPU2 DPU1

● Our design choice is to keep the original Lucene index untouched
● A new index specific to PIM is stored in the PIM memory
● A PIMIndexWriter is the interface for writing a Lucene index that also contains the PIM index

○ First create the normal Lucene index
○ Then read the Lucene index and create the PIM index
○ The postings of each term are spreaded over the DPUs based on the document ID
○ Each DPU contains a subset of documents

Lucene for DPU

7/25 Copyright UPMEM® 2024

PIM Lucene Index Architecture (2)

body Apache
Table

Lucene
Search
Term
Tree

posting lists

Field Table Block Tables Block List

● The PIM index stores the term bytes sorted (difference with UPIS project)
○ This will enable to handle prefix or fuzzy queries

● The PIM index for one DPU consists in four parts:
○ A field table that associates to each field the address where to find the field's term block table
○ A list of term block table for each field, used to find the block where a particular term should be searched
○ A block list where each block is a list of terms of a small and configurable size meant to be scanned linearly
○ The postings lists (delta-encoded)

● Ex with one field “body” containing 6 terms “Apache”, “Lucene”, “Search”, “Table”, “Term”, “Tree”, block size=3

Lucene for DPU

8/25 Copyright UPMEM® 2024

Searching Consecutive Words

1. Document selection: Find next DID where all words from the query are present
2. Word alignment: Check if words are found consecutively in this DID
3. Repeat the process until all documents have been looked into

Lucene for DPU

9/25 Copyright UPMEM® 2024

PIM Lucene Query Architecture

Searcher 1

Searcher 2

Searcher 3

PIM
Manager

queries

results

DPU

broadcast query batch

aggregate results

● Create a specific query class in Lucene for each query to be executed on PIM
○ For instance PimPhraseQuery object

● The system may decide to run the query on PIM or with standard Lucene index
● A global PIM manager collects the queries coming from different searcher threads
● Queries are sent as a batch to the DPUs and results are collected => [docId, freq]
● The CPU uses the freq and the norm (stored on disk) to compute the score

Lucene for DPU

10/25 Copyright UPMEM® 2024

Code Example : Indexing

Create a PimIndexWriter, the PimConfig specifies PIM system parameters

Closing the writer will commit the standard Lucene index and create the PIM index

Lucene for DPU

11/25 Copyright UPMEM® 2024

Code Example : Search

Create index reader, open and load the PIM index

Build the PimPhraseQuery and search the index

Lucene for DPU

12/25 Copyright UPMEM® 2024

Lucene Segments

Lucene Index

segment1 segment2 segment3

doc:0

doc:100

…
doc:101

doc:200

…
doc:201

doc:300

…

index.addDocument(...)
…

index.addDocument(...)
index.commit();

segment4

doc:301

doc:XXX

…

new index commit

deleted documents list

● Lucene uses the concept of index segments which allows for dynamic updates of the index
● Each segment is the index for a subset of all documents (postings, norms etc.)
● An index commit creates a new segment which contains the documents added for the commit
● A segment is immutable, deleted documents are marked as such but the data stays in the index
● Periodically, segments are merged and documents actually deleted

Lucene for DPU

13/25 Copyright UPMEM® 2024

Lucene Segments Support for DPU

Searcher 1

query1 segment1

results query1/segment1

DPU

broadcast query1

query1 results

PIM Manager

query1 segment2

results query1/segment2

Cache
query1 segment1
query1 segment2
query1 segment3

1
2

3
4

Lucene for DPU

● Our design choice is not to support incremental updates of the PIM index for now
○ After each commit the complete PIM index is re-generated
○ This is sufficient for scenarios where the index updates are infrequent

● Still, high-level Lucene APIs expects the results to be provided on a per segment basis (in order)
○ Modifying this would mean significantly changing Lucene’s architecture

● Solution: Results of all segments are cached and returned on demand on a per-segment basis

14/25 Copyright UPMEM® 2024

Scatter-Gather Transfer of Results

doc:2 doc:16 doc:5 doc:19 doc:3 doc:6 doc:12 doc:15

DPU1 results DPU2 results

segment1 : doc:0 to doc:9
segment2 : doc:10 to doc:19

doc:2 doc:3 doc:16doc:6 doc:12 doc:5 doc:19 doc:15

query1 query2 query1 query2

query1:segment1 query1:segment2 query2:segment1 query2:segment2

Host results

Scatter-gather transfer

Lucene for DPU

● Results on the host are scattered: each DPU provide results for different queries and segments
● We need to return to each search thread a reader for results of a particular query/segment
● It is possible to have all readers make “scattered” reads from the same buffer but better is to use

scatter-gather transfers

15/25 Copyright UPMEM® 2024

Tasklets Load Balancing

term:Lucene doc:2 pos:5 pos:12 doc:6 pos:7 pos:22 doc:9 pos:1 pos:8

DPU1 segment1
=> tasklet1

DPU1 segment2
=> tasklet2

DPU1 term “Lucene” postings:

10 documents in index
DPU segment1 range=1..5
DPU segment2 range=6..10

Lucene for DPU

● The work on a DPU needs to be parallelized between different tasklets
● A straightforward way is to parallelize over queries: each tasklet handles a different query

○ Does not work well for small batches of size less than the number of tasklets
○ The amount of work can greatly varies between queries => bad load balancing

● A better solution is to create “PIM-index segments” which are defined by a document id range
● Each tasklet then searches a segment of each query
● Small overhead in PIM-index to store DPU index skip information (delta-encoded positions)

Benchmarks

Copyright UPMEM® 2024

17/25 Copyright UPMEM® 2024

Benchmarking Setup
Benchmarks

UPMEM Benchmark Server (PIM+CPU vs. CPU compute)

Component Details QTY
(PIM)

CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz, 16 cores,
22MB cache, 100W TDP

2

RAM Samsung 32GiB 2400 MHz M393A4K40CB2-CTD DIMM 8

PIM Memory DDR4-2400 PIM Module (16 x 512MB/8DPU) @ 350MHz 16

English wikipedia dataset - 20M+ files - over 240GB of text
1036 queries extracted from Lucene nightly benchmarks

18/25 Copyright UPMEM® 2024

Profiling View (64 Search threads)

DPU execution is in
purple => it takes the
largest fraction of the
time

Load balancing OK

The time to read and
score the results is
shadowed by DPU
time

Batch size still varies

Benchmarks

19/25 Copyright UPMEM® 2024

PIM-Lucene PhraseQuery Speedup

Two main observations

● Speedup increases with number
of top docs

● Speedup decreases with number
of searcher threads

Benchmarks

20/25 Copyright UPMEM® 2024

Parallelism with Searcher threads

● When the number of
threads is low, parallelism
on one query makes a
difference

● When using query-level
parallelism in Lucene (red
bars), the throughput is
better for low number of
threads

Benchmarks

21/25 Copyright UPMEM® 2024

Performance vs Number of Topdocs

● Lucene shows a good
acceleration when the
number of top docs
decreases

● This is because it uses a
lower bound to avoid
checking all documents

● Next step: implementing
the lower bound on DPU

Benchmarks

22/25 Copyright UPMEM® 2024

Lower Bound Synchronization

● This makes use of
the Parallel WRAM
access feature

● Host maintains a
heap of the best
results

● Acceleration with
low number of
topdocs has been
smoothened

Benchmarks

