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Enables computations on encrypted data without prior decryption

Data is encrypted during transit and processing

Homomorphic Encryption (HE)
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Enables computations on encrypted data without prior decryption
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Privacy preserving machine learning

Secure data analysis and processing

Secure systems and transactions

Potential Usecases
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Secure systems and transactions
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HE supports computation on encrypted data (Ciphertext)

Ciphertexts can be significantly larger than plaintexts

At least a 50x increase in data size [F1 Accelerator, Samardzic et al., MICRO '21]

Leads to challenging data movements to perform complex operations

Overhead of HE
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Foundations in lattice cryptography
Resistant to quantum computing attacks!
Utilizes the complexity of (ring) learning with errors

 Cryptographic Constructs 
schemes: BGV, BFV, CKSS, etc
primitives: keygen, encrypt, decrypt, evaluation, i.e EvalAdd, EvalMult, etc

Data representation in HE
Polynomials are expressed in a quotient ring format: 
Typical polynomial forms:

 HE Background

4



Operations: addition and multiplication are carried out on each coefficient-wise

Addition: performed using modular adder unit:  

Multiplication: uses barrett's and montgomery reduction algorithm for efficient computation.

HE bottleneck:
Operations on high bit-width coefficients (up to 1000 bits) solved by RNS
Significant computational overhead for high-degree polynomials, common in HE schemes

HE Polynomial Arithmetic
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Accelerating FHE Schemes
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Focuses on algorithm optimization

Transforms (NTT), Bootstrapping, Encoding 

Utilizes hardware for acceleration

GPUs, FPGAs, AVX, ASIC



Processing In-Memory (PIM)
Concept: bringing computation closer to data to reduce data movement bottleneck

UPMEM PIM : features thousands of innovative Data Processing Units (DPUs) embedded within
DRAM memory chips

Organization: each DRAM memory chip comprises of 8 DPUs with each DPU having explicit
access to 64MB of MRAM

DPUS: General purpose processor, up to 24 tasklets with 11 pipeline stages
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Programming DPU
Control mechanism: DPUs are managed by high-level applications running on the main CPU
(Host)

Task orchestration: host ensures task coordination and execution across the DPUs.

Programmability:
SDK Available: host applications can be developed in C/C++, Java, and Python
DPU programming: currently only supports C

Host 
Launch dpu1.
While:2.

copy to dpua.
launch dpu b.
copy from dpuc.

DPU 

Run the Kernel
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UPMEM PIM features: provides extensive parallelism up to 2560 DPUs with up to 256 GB of PIM

RAM

Main idea: use polynomial arithmetic algorithms as kernels for the DPUs

UPMEM PIM as an Accelerator for HE

8



Evaluation

Host: two-socket server 10-core Intel Xeon Silver 4210R (2.40GHz) per socket, hyper-

threading , Cache Hierarchy - 32KB L1d, 32KB L1i, 1MB L2, 13.75MB L3

PIM: DPU 32 ranks (2048 DPUs, 350MHz each), 128GB MRAM, 1GB/s per DPU, total

2.048TB/s bandwidth

Evaluation methodology
Metrics: CPU execution time (cpu-time), DPU execution time (dpu-time), host-to-DPU

copy time (host-dpu), and DPU-to-host copy time (dpu-host).

Setup: CPU experiments use 16 threads, and DPU experiments use 16 tasklets.
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What : library for FHE implementations, incorporating design
features from PALISADE, HElib, HEAAN, and FHEW

Acceleration
Point

Case Study: OpenFHE

OpenFHE design paper
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Encoding Layer
SIMD packing for vector of interger

SIMD packing for vectors of real numbers
Other plaintext encoding methods

Application Layer
Example in OpenFHE

External projects using OpenFHE
Compilers/transpilers

Crypto Layer
BGV, BFV, CKKS, DM, CGGI FHE Schemes

Proxy reencryprion/threshhold FHE extensions
Noise estimation for FHE schemes (future)
Scheme switching for FHE schemes (future)

Lattice/Polynomial Layer
Power-of-two cyclotomic rings
RNS/Double-CRT algorithms

Lattice trapdoor sampling
General cyclotomic ring  (future)

Primitive Math Layer
Modular integer/vector operation

NTT/FFT/Bluestein’s transform
PRNG/integer sampling algorithm

Cryptographic capabilities: supports efficient
implementations of all common FHE schemes i.e BGV, BFV,
CKKS, DM/FHEW and CGGI/TFHE

Ciphertext representation : pair of polynomials in DCRT
format which is combination of NTT and RNS representations

Key feature: includes a hardware abstraction layer (HAL)
supports for multiple hardware acceleration back-ends such
as AVX, GPU, FPGA etc

https://eprint.iacr.org/2022/915


Case Study: OpenFHE
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Case Study: OpenFHE
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DCRT Polynomial Multiplication



Number Theoretic Transform
Transforms a polynomila from NTT for efficient
Multiplications

Core operations : cooley -tukey butterfly for NTT  and  
gentleman -sande harvey butterfly for iNTT

Butterfly operation “B”: generally involves combination of
modular addition and multiplication algo. Offload
butterflies to DPUs

Data dependency: between iteration need to update  tables
in the DPUs
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CONCLUSION
HE allows computations to be performed directly on encrypted data, but slow

HE applications can benefit from the UPMEM PIM massive parallization

Need to efficiently manage the data copies to/from DPUs and host
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