
BIMSA: Accelerating Long 
Sequence Alignment

Using 
Processing-In-Memory

Author
Alejandro Alonso-Marín

Co-Authors:
Santiago Marco-Sola,
Ivan Fernandez,
Quim Aguado,
Juan Gomez-Luna,
Onur Mutlu,



1. Introduction and Motivation

2. Background

3. PIM-enabled BiWFA Implementation

4. Experimental Results
5. Take Away Messages



1.1 Genomic Sequencing and Sequence Alignment
Sequencing an organism's genome enables:

• Personalized medicine/therapies.

• Tracing a real-time virus outbreak.

• Editing an organism genome.

Genomic Sequencing requires Sequence Alignment 

which compares DNA/RNA sequences to obtain:

• Path of operations to transform one sequence into 

another (aka CIGAR).

• Distance/error/score (sum of the operation 

weights).

3



1.2 Sequence Alignment Algorithms

Classical sequence alignment algorithms are based on 

Dynamic Programming (DP) (e.g., Needleman-Wunsch, 

Smith-Waterman) which compute the full matrix (n×m).

• Complexity O(n×m) in memory and time. 

Wavefront Algorithm (WFA): computes the cells in increasing 
score (s), avoiding suboptimal cells.

• Complexity O(n×s) in compute and O(s2) in memory.

Bidirectional Wavefront Algorithm (BiWFA): computes WFA 
in both ends of the matrix.

• Complexity O(n×s) in compute and O(s) in memory.

All algorithms are a memory bound problem.

4

1M chars

1M
 c

h
ar

s

4x10¹² bytes
(4000 GB)

G A A T A
0 1 2 3 4 5

G 1 0 1 2 3 4
A 2 1 0 1 2 3
T 3 2 1 1 1 2
T 4 3 2 2 1 2
A 5 4 3 2 2 1
C 6 5 4 3 3 2
A 7 6 5 4 4 3



1. Introduction and Motivation

2. Background

3. PIM-enabled BiWFA Implementation

4. Experimental Results
5. Take Away Messages



2.1 BiWFA Key Concept
1. Compute independent WFA from both ends.
2. Find where the two WFA collide/meet (breakpoint of 

the alignment).
3. Recursively divide and conquer the problem. 
Breakpoint gives distance, offset and operation of the 
optimal path → All breakpoints = Operation path.
BiWFA needs 4 increasing arrays (wavefronts) O(s).
WFA stores intermediate wavefronts O(s2).

6

T G G A A A G
T 0 1 2
C 1 1
T 2 2
A 2
G
C
G

T G G A A A G
T
C
T
A 2 2
G 2 2
C 1 1
G 2 1 0

FORWARD WAVEFRONT REVERSE WAVEFRONT

s=1 s=2

4

2 5

3

s=2 s=1

5

5 2

3



2.2 Processing-In-Memory (PIM) Paradigm

Processing-In-Memory (PIM) is a paradigm that aims 
to alleviate memory bound problems.

Key idea: place compute units close to data.

This enables:

• Exploiting higher bandwidth and lower latency.
• Reducing energy consumption.

We use the UPMEM PIM architecture.

1. Up to 2500 compute units (DPUs).
2. Up to 24 hardware threads.
3. 64MB DRAM memory (MRAM).
4. 64KB scratchpad memory (WRAM).
5. General purpose processor.

7



1. Introduction and Motivation

2. Background

3. PIM-enabled BiWFA Implementation

4. Experimental Results
5. Take Away Messages



3.1 BIMSA: BiWFA PIM-based Implementation

For each thread (coarse-grain parallelism):

1. Compute BiWFA and find a breakpoint.

2. Slice sequences in half.

3. Compute BiWFA in both slices.

4. Iterate until distance equals a threshold.

5. Use WFA for the small slices (base case).

6. Obtaining partial CIGARs from the base 

cases.

7. Join partial CIGARs.

9

Challenge: Full-recursive BiWFA presents many corner cases.

Key idea: Execute BiWFA until the slices have a suitable size for WFA.

Leverage: BiWFA property → breakpoint gives distance.



3.2 BIMSA Optimizations: Base Case in Scratchpad

10

BiWFA steps use 4 scratchpad blocks independently 
and access DRAM when the block is used.

These 4 blocks are not needed for the base case.

• Merge the 4 blocks and use them for the base 
case.

WFA memory space is defined by distance.

• Use the 4 blocks size as base case threshold.

We eliminate completely any DRAM access.

BASE CASE 
SPACE



3.2 BIMSA Optimizations: Adaptive Transfers

11

BiWFA uses increasing data structures that reset its size 
after each breakpoint.

However, we know exactly the amount of data to transfer 
in each iteration.

• UPMEM allows to indicate the transfer size in each 
DRAM/scratchpad transfer.

• We define the scratchpad data structures to the 
maximum size we expect to transfer (2048 max).

• Start from 8 byte transfers and increase x2 upon 
surpassing the current transfer size.

• Reset to 8 bytes after each breakpoint.
• With this mechanism we read minimum useless data.



3.2 BIMSA Optimizations: BiWFA Steps Fusion

12

The original BiWFA makes use of vectorization → UPMEM 
does not support vectorization.

BiWFA uses two main computation steps. Applying them in 
large wavefronts require several memory transfers.

• UPMEM allows to explicitly manage scratchpad memory 
blocks.

• Apply both steps on a scratchpad block.
• Two elements are read twice per block.
• We reduce up to 40% the MRAM accesses.



3.2 BIMSA Optimizations: CPU Recovery

13

BIMSA is based on coarse-grain parallelism:

- No DPU intercommunication.
- High cost tasklet communication.

Datasets from real sequencers (e.g., Nanopore, PacBio) produce heterogeneous alignment 
times between tasklets and DPUs.

Solution (BIMSA-Hybrid):

- Alignment batching and different dpu_sets.
- Add distance/score limit to alignments O(ns) & finish larger alignments on CPU.



1. Introduction and Motivation

2. Main Tools Background

3. PIM-enabled BiWFA Implementation

4. Experimental Results
5. Take Away Messages



4.1 Experimental Setup

● Datasets
○ 9 simulated datasets (different sequence lengths and different error rates).

○ 4 real sequencer datasets (Illumina x2, Nanopore, PacBio).

● Applications
○ CPU: Official BiWFA implementation (WFA2lib).

○ PIM: state-of-the-art AIM implementations, WFA and NW (AIM-WFA, AIM-NW).

○ BIMSA (Ours): PIM - BiWFA implementation (UPMEM-v1B).

○ BIMSA Next generation projection (UPMEM-v1A) → Based on scalability results.

● Machines
○ CPU: Intel Xeon Silver 4215 2.50 GHz, 2 sockets of 8 cores each; 16 hardware threads.

○ UPMEM-node: 2556 DPUs 350 MHz, 24 threads.

15



4.2 BIMSA Scalability (DPUs & Threads)

Optimal DPU scaling as long as the number of 
sequences is enough to feed all DPUs.

• DPUs are not limited by memory 
bandwidth like CPU (each DPU has its own 
memory bank).

11 threads are enough to obtain peak 
performance from the DPUs.

• Each thread can issue an instruction every 
11 cycles on the DPU pipeline.

• Saturating at 11 threads means the 
pipeline is fully utilized.

• We start saturating at 8 threads which 
indicates some MRAM access saturation.

16



4.3 PIM Performance Scaling in respect to CPU

• AIM-NW (DP-based on PIM) is 
outperformed by all the other 
implementations.

• AIM-WFA (WFA-based on PIM) is 
unable to execute long sequences 
and is outperformed by BIMSA.

• BIMSA (Ours) outperforms all other 
implementations and shows the best 
scalability for all datasets.
Up to 22.23x speedup against 
AIM-WFA and 5.84x times against 
WFA2lib.

• BIMSA projected is almost able to 
double the performance in all cases.

17



4.4 PIM Performance for Heterogeneous Datasets
• BIMSA is outperformed by CPU in PacBIO and Nanopore due to alignment 

heterogeneity.

• BIMSA-Hybrid outperforms CPU by utilizing CPU recovery on the larger alignments.

New Feature: WRAM parallelism.

• Currently: Execute all batch alignments and stop to send to the CPU the larger 
alignments.

• Upcoming: Send large alignments to the CPU while computing the next alignment.
18



1. Introduction and Motivation

2. Background

3. PIM-enabled BiWFA Implementation

4. Experimental Results
5. Take Away Messages



5.1 Take Away Messages
- Genomic sequencing is a fundamental tool in modern biology and healthcare, which 

uses sequence alignment, a memory bound problem.

- PIM places computation closer to data, aiming the acceleration of memory bound 
problems such as sequence alignment.

- We present BIMSA, a PIM-aware optimized implementation of BiWFA for UPMEM. 
BIMSA achieves up to 22.23x speedup against AIM-WFA and 5.84x times against 
WFA2lib.

- PIM technology, while being immature, demonstrates promising results to accelerate 
memory-bound problems. We expect significant improvements in the near future.

20
Thanks for your attention!

Contact: alejandro.alonso1@bsc.es


