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The Memory Wall Problem

• Memory Wall

• Widening gap between the processor performance and 

memory access speed (memory bandwidth/latency).

• High power consumption of data movement.

• Data movement becomes the key bottleneck.
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Processing-in-Memory (PIM)

• Processing-in-memory

enables computation to be 

pushed to memory

• Appears in 1970s

• Advance in memory tech.

• Core(s) in each memory 

module

PIM module:

Data Processing Unit (PIM core)

& the local memory it can visit



The Processing-in-Memory Model*
• One multicore CPU side

• With a shared cache (LLC) of 

size 𝑀 words

• 𝑃 PIM modules in total

• Each PIM module

• One PIM core that can only visit 

local memory & communicate 

with CPU through network

• Local memory sized Θ n/𝑃 ∗∗ 

words

7

* Kang, et al. The Processing-In-Memory Model. SPAA’21.

** 𝒏 is the problem size / input data size.



The Processing-in-Memory Model
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• BSP style execution

• Synchronous rounds

• Metrics

• CPU work & span

• PIM time: Maximum work 

on any PIM processor

• IO time: Maximum number 

of word-sized messages 

from/to any PIM module
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Pointer-Chasing Index

• Core block for in-memory storages.

• Victim of its serial random memory access pattern (pointer-chase)

• Store key-value paired data

• Support operations:

• Get(key)

• Insert(key, value) & Delete(key)

• Predecessor/Successor(key) & Range(Lkey, Rkey)

• Batch Parallel Execution

• Skip list

• B-tree?



• Range-partitioning: Local skip lists for disjoint key ranges

• Pros:
• Low data movement: Constant per point operation

• Parallelism for keys in different ranges

Prior Work: PIM-based Ordered Indexes*

* Choe, et al. Concurrent Data Structures with Near-Data-Processing. SPAA’19.
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Drawbacks of Range Partitioning Indexes*

* Choe, et al. Concurrent Data Structures with Near-Data-Processing. SPAA’19.

0 6 CPU7 25Predecessor   7  8  9  10

• Cons: Vulnerable to skewed operations batches

• Query skew occur in real datasets: YCSB, …

• Uneven distribution of keys cause load imbalance
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Alternative Approach: Random Mapping
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Assuming 4 PIM modules (P = 4 as number of PIM modules)

Randomly distributed: Resolving module-wise contention

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

Pros: Resolving module-wise contention

Cons: Does not reduce communication [𝑂(log 𝑛) in trees]



Alternative Approach: Random Mapping

16
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Designing PIM-based indexes
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Space

(Update)

Efficient

Communication 
Reduction 
(Locality)

Load-balance

Range

Partitioning

Random

Mapping

Full Replication



Designing PIM-based indexes
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Achieving provable (theoretical) and practical efficiency in 

throughput, communication and space.

PIM-tree says:

Yes!

Space

(Update)

Efficient

Communication 
Reduction 
(Locality)

Load-balance





Our Work in a Nutshell

• Replicated upper part: From key insights of trees.

• Push-pull search: A lightweight design for load 

balancing.

• Shadow subtree: Provide vertical locality.

• Chunking: Provide horizontal locality.

19



Taking Insight from Trees

• Key Observation in Tree-structured Indexes

• The upper part of the tree is frequently accessed in 

search queries.

• The size of the upper part is asymptotically small.

• The upper part is infrequently updated.

• Replicating the upper part in PIM modules should 

be beneficial.

20



Two-Layer Structure: Replicated upper part
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Randomly distributed lower part of height log(P)

Replicated upper O(n/P) nodes across 𝑷 PIM modules
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Randomly distributed lower part of 𝑶(𝒍𝒐𝒈 𝑷) height

Replicated upper part

with few nodes but large height
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Powerful Upper Part: Load-balance & Comm.
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Predecessor: 1 8 9 10

Low Communication: Only need to communicate 𝑂(log 𝑃).



Challenge: Node-wise Contention on Lower Part

23

Predecessor:
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Solution: Push-Pull Search
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Shadow Subtree: Partial Replication
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• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.
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PIM-tree Structure: Three-layer

31

• Three-layer structure

• Upper part (L3): Fully replicated in all PIM modules.

• Middle part (L2): Partially replicated by Shadow subtree.

• Lower part (L1): Distributed to random PIM modules.
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L3 L2 L1

Height log 𝑛 − log 𝑃 log 𝑃 − log log 𝑃 log log 𝑃

Replication 

Strategy
Full Replication Shadow Subtree Distributed

Search Comm.

(in words)
𝑶(𝟏) 𝑶(𝟏) 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝑷)

# of Nodes in this 

layer
Θ(𝑛/𝑃) Θ(𝑛/ log 𝑃) Θ(𝑛)

# of Replicas per 

Node
𝑂(𝑃) 𝑂(log 𝑃) 𝑂(1)

Space Θ(𝑛) Θ(𝑛) Θ(𝑛)

Update 

Frequency
1/𝑃 1/ log 𝑃 1

Update Comm.

(post search)
𝑶(𝟏) 𝑶(𝟏) 𝑶(𝟏)

Results of the Three-layer Structure
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Chunking : Further Horizontal Locality
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• In the lower part, merge 

horizontal nodes chunks. 

stored on one PIM module.

• Cut all horizontal inter-

module communication.

• Expected chunk size: 𝐵

• Typically 𝐵 = 16
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Results in The PIM Model

• Load-balance guaranteed* against adversary

• Reduced Communication regardless of skew

• 𝑶(𝐥𝐨𝐠𝑩 𝐥𝐨𝐠𝑩 𝑷) per operation for both search and update

• 3 or 4 communication rounds in practice

• Linear space consumption Θ(𝑛)

36

* With high probability if the batch size is large enough. 



Experimental Platform

37

• Upmem tech: https://www.upmem.com

256GB in total. Each PIM core is a 32-bit RISC processor @450MHz.

In this architecture, scheduling of PIM modules are done by the user program.



Results Comparing with Prior PIM-based Indexes
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Predecessor() Throughput

on Zipf workloads

Up to 59X improvement !



Results Comparing with CPU-based Indexes
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Experiments on Wikipedia dataset Over SOTA Shared-memory Indexes

* Bars are throughputs; ‘+’ are communications

Less communication, faster inserts



New Early-Stage Results in Bandwidth
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• Optimize communication for small batches

• Scatter/Gather buffers of 1~1024 KB with all DPUs

• 32 ranks, 2000 PIM modules functioning



New Early-Stage Results in Throughput
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• Applying new interface on Wikipedia dataset

• 32 ranks, 2000 PIM modules functioning

• upmem-sdk-light

@ github
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Key Takeaways
• PIM emerging as means of reducing data movement

• Prior works of PIM indexes vulnerable to skew

• PIM-tree is a skew-resistant database index

• Three-level Structure: Different replication strategies 

• Push-pull search: Lightweight load balance

• Chunking: Further reduction on communication

• Provable and practical efficiency

• Codes: https://github.com/cmuparlay/PIM-tree

Space

Efficient

Low 
Communica-

tion

Load-
balance





Ideal Memory
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Scalable

Capacity

Shared

memory

Low-cost

Access

Traditional

Main Memory

Processing-in-Memory

High-Bandwidth Memory



B-tree? Skip lists?
• Both are used in practice

• Skip lists used in the memory part for LSM trees

• We believe our optimizations apply to both

• B-tree can be interesting future work.

• In our implementation

• L3 is implemented by a b-tree

• L2 and L1 are implemented by skip lists

– Enables easier parallel inserts/deletes

44
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