
PIM-tree: A Skew-resistant Index for

Processing-in-Memory

Hongbo Kang

Tsinghua Univeristy

Yiwei Zhao

CMU

Guy E. Blelloch

CMU

Laxman Dhulipala

University of Maryland

Yan Gu

UC Riverside

Charles McGuffey

Reed College

Phillip B. Gibbons

CMU

The Memory Wall Problem

• Memory Wall

• Widening gap between the processor performance and

memory access speed (memory bandwidth/latency).

• High power consumption of data movement.

• Data movement becomes the key bottleneck.

2

The Memory Wall Problem

• Memory Wall

• Widening gap between the processor performance and

memory access speed (memory bandwidth/latency).

• High power consumption of data movement.

• Data movement becomes the key bottleneck.

3

The Memory Wall Problem

• Memory Wall

• Widening gap between the processor performance and

memory access speed (memory bandwidth/latency).

• High power consumption of data movement.

• Data movement becomes the key bottleneck.

4

The Memory Wall Problem

• Memory Wall

• Widening gap between the processor performance and

memory access speed (memory bandwidth/latency).

• High power consumption of data movement.

• Data movement becomes the key bottleneck.

5

6

Processing-in-Memory (PIM)

• Processing-in-memory

enables computation to be

pushed to memory

• Appears in 1970s

• Advance in memory tech.

• Core(s) in each memory

module

PIM module:

Data Processing Unit (PIM core)

& the local memory it can visit

The Processing-in-Memory Model*
• One multicore CPU side

• With a shared cache (LLC) of

size 𝑀 words

• 𝑃 PIM modules in total

• Each PIM module

• One PIM core that can only visit

local memory & communicate

with CPU through network

• Local memory sized Θ n/𝑃 ∗∗

words

7

* Kang, et al. The Processing-In-Memory Model. SPAA’21.

** 𝒏 is the problem size / input data size.

The Processing-in-Memory Model

8

• BSP style execution

• Synchronous rounds

• Metrics

• CPU work & span

• PIM time: Maximum work

on any PIM processor

• IO time: Maximum number

of word-sized messages

from/to any PIM module

The Processing-in-Memory Model

9

• BSP style execution

• Synchronous rounds

• Metrics

• CPU work & span

• PIM time: Maximum work

on any PIM processor

• IO time: Maximum number

of word-sized messages

from/to any PIM module

10

Pointer-Chasing Index

• Core block for in-memory storages.

• Victim of its serial random memory access pattern (pointer-chase)

• Store key-value paired data

• Support operations:

• Get(key)

• Insert(key, value) & Delete(key)

• Predecessor/Successor(key) & Range(Lkey, Rkey)

• Batch Parallel Execution

• Skip list

• B-tree?

• Range-partitioning: Local skip lists for disjoint key ranges

• Pros:
• Low data movement: Constant per point operation

• Parallelism for keys in different ranges

Prior Work: PIM-based Ordered Indexes*

* Choe, et al. Concurrent Data Structures with Near-Data-Processing. SPAA’19.

V0

0

2 V

PIM Module 1

6 V

6

PIM Module 2

7 V 15 V 20 V

7

PIM Module 3

25 V 33 V

25

PIM Module 4

0 6 CPU7 25

Drawbacks of Range Partitioning Indexes*

* Choe, et al. Concurrent Data Structures with Near-Data-Processing. SPAA’19.

0 6 CPU7 25Predecessor 7 8 9 10

• Cons: Vulnerable to skewed operations batches

• Query skew occur in real datasets: YCSB, …

• Uneven distribution of keys cause load imbalance

V0

0

2 V

PIM Module 1

6 V

6

PIM Module 2

7 V 15 V 20 V

7

PIM Module 3

25 V 33 V

25

PIM Module 4

Drawbacks of Range Partitioning Indexes*

* Choe, et al. Concurrent Data Structures with Near-Data-Processing. SPAA’19.

7 V 15 V 20 V

7

PIM Module 3

0 6 CPU7 25

• Cons: Vulnerable to skewed operations batches

• Query skew occur in real datasets: YCSB, …

• Uneven distribution of keys cause load imbalance

PRED 7 8 9 10

V0

0

2 V

PIM Module 1

6 V

6

PIM Module 2

25 V 33 V

25

PIM Module 4

Alternative Approach: Random Mapping

15

Assuming 4 PIM modules (P = 4 as number of PIM modules)

Randomly distributed: Resolving module-wise contention

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

Pros: Resolving module-wise contention

Cons: Does not reduce communication [𝑂(log 𝑛) in trees]

Alternative Approach: Random Mapping

16

Assuming 4 PIM modules (P = 4 as number of PIM modules)

Randomly distributed: Resolving module-wise contention

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

Pros: Resolving module-wise contention

Cons: Does not reduce communication [𝑂(log 𝑛) in trees]

CPU

PIM1 PIM2 PIM3 PIM4

Q

Designing PIM-based indexes

17

Space

(Update)

Efficient

Communication
Reduction
(Locality)

Load-balance

Range

Partitioning

Random

Mapping

Full Replication

Designing PIM-based indexes

18

Achieving provable (theoretical) and practical efficiency in

throughput, communication and space.

PIM-tree says:

Yes!

Space

(Update)

Efficient

Communication
Reduction
(Locality)

Load-balance



Our Work in a Nutshell

• Replicated upper part: From key insights of trees.

• Push-pull search: A lightweight design for load

balancing.

• Shadow subtree: Provide vertical locality.

• Chunking: Provide horizontal locality.

19

Taking Insight from Trees

• Key Observation in Tree-structured Indexes

• The upper part of the tree is frequently accessed in

search queries.

• The size of the upper part is asymptotically small.

• The upper part is infrequently updated.

• Replicating the upper part in PIM modules should

be beneficial.

20

Two-Layer Structure: Replicated upper part

21

Randomly distributed lower part of height log(P)

Replicated upper O(n/P) nodes across 𝑷 PIM modules

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

Height

𝐥𝐨𝐠 𝑷

Height

𝐥𝐨𝐠
𝒏

𝑷

Left Out

Randomly distributed lower part of 𝑶(𝒍𝒐𝒈 𝑷) height

Replicated upper part

with few nodes but large height

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

Left Out

Powerful Upper Part: Load-balance & Comm.

22

Predecessor: 1 8 9 10

Low Communication: Only need to communicate 𝑂(log 𝑃).

Challenge: Node-wise Contention on Lower Part

23

Predecessor:

1 8 9 10

CPU side

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

PIM side

1 8 9 10

Pt: to 0 Pt: to 7 Pt: to 7 Pt: to 7

1 8 9 10

Solution: Push-Pull Search

24

Predecessor:

1 8 9 10

CPU side

0 V 2 V 6 V 7 V-∞ 15 V 20 V 25 V 33 V

-∞ 0 6 7 25

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

-∞ 0 7

-∞ 7

PIM side

1 8 9 10

Pt: to 0 Pt: to 7

Pt: to 7 Pt: to 7

1 8 9 10

7

Push computation to PIM

Pull data to CPU

Shadow Subtree: Partial Replication

25

• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.

-∞ 3 5 7

9

-∞ 1 63 5 7 8 9

Lower73 51-∞

4

-∞ 5 -∞ 5 -∞ 5 -∞ 5 Upper

L2

L1

Shadow Subtree: Partial Replication

26

• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.

• Basic Idea: L2 nodes cache their descendant subtree.

-∞ 3 5 7

973 51-∞

L2

Shadow Subtree: Partial Replication

27

• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.

• Basic Idea: L2 nodes cache their descendant subtree.

-∞ 3 5 7

973 51-∞

L2

Shadow Subtree: Partial Replication

28

• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.

• Basic Idea: L2 nodes cache their descendant subtree.

-∞ 5 7

975

L2

3

3

1-∞

3

31-∞

Shadow Subtree: Partial Replication

29

• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.

• Basic Idea: L2 nodes cache their descendant subtree.

-∞ 5 7

975

L2

3

3

1-∞

3

31-∞

3 5

7

7 9

1

7 9

9

Shadow Subtree: Partial Replication

30

• Rebuild vertical locality in lower part by partial replication.

• Due to space constraint and update cost.

• Basic Idea: L2 nodes cache their descendant subtree.

-∞ 5 7

975

L2

3

3

1-∞

3

31-∞

3 5

7

7 9

1

7 9

9

PIM-tree Structure: Three-layer

31

• Three-layer structure

• Upper part (L3): Fully replicated in all PIM modules.

• Middle part (L2): Partially replicated by Shadow subtree.

• Lower part (L1): Distributed to random PIM modules.

-∞ 5 7

975

L2

3

3

1-∞

3

31-∞

3 5

7

7 9

1

7 9

9

-∞ 5 -∞ 5 -∞ 5 -∞ 5 L3

-∞ 1 63 5 7 8 94 L1

L3 L2 L1

Height log 𝑛 − log 𝑃 log 𝑃 − log log 𝑃 log log 𝑃

Replication

Strategy
Full Replication Shadow Subtree Distributed

Search Comm.

(in words)
𝑶(𝟏) 𝑶(𝟏) 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝑷)

of Nodes in this

layer
Θ(𝑛/𝑃) Θ(𝑛/ log 𝑃) Θ(𝑛)

of Replicas per

Node
𝑂(𝑃) 𝑂(log 𝑃) 𝑂(1)

Space Θ(𝑛) Θ(𝑛) Θ(𝑛)

Update

Frequency
1/𝑃 1/ log 𝑃 1

Update Comm.

(post search)
𝑶(𝟏) 𝑶(𝟏) 𝑶(𝟏)

Results of the Three-layer Structure

L3 L2 L1

Height log 𝑛 − log 𝑃 log 𝑃 − log log 𝑃 log log 𝑃

Replication

Strategy
Full Replication Shadow Subtree Distributed

Search Comm.

(in words)
𝑶(𝟏) 𝑶(𝟏) 𝑶(𝐥𝐨𝐠 𝐥𝐨𝐠 𝑷)

of Nodes in this

layer
Θ(𝑛/𝑃) Θ(𝑛/ log 𝑃) Θ(𝑛)

of Replicas per

Node
𝑂(𝑃) 𝑂(log 𝑃) 𝑂(1)

Space Θ(𝑛) Θ(𝑛) Θ(𝑛)

Update

Frequency
1/𝑃 1/ log 𝑃 1

Update Comm.

(post search)
𝑶(𝟏) 𝑶(𝟏) 𝑶(𝟏)

Results of the Three-layer Structure

Chunking : Further Horizontal Locality

34

• In the lower part, merge

horizontal nodes chunks.

stored on one PIM module.

• Cut all horizontal inter-

module communication.

• Expected chunk size: 𝐵

• Typically 𝐵 = 16

-∞ 5 7

975

1-∞

3

31-∞

3 5 7 9

-∞ 5 -∞ 5 -∞ 5 -∞ 5

-∞ 1 63 5 7 8 94

L2

L3

L1

Results in The PIM Model

• Load-balance guaranteed* against adversary

• Reduced Communication regardless of skew

• 𝑶(𝐥𝐨𝐠𝑩 𝐥𝐨𝐠𝑩 𝑷) per operation for both search and update

• 3 or 4 communication rounds in practice

• Linear space consumption Θ(𝑛)

36

* With high probability if the batch size is large enough.

Experimental Platform

37

• Upmem tech: https://www.upmem.com

256GB in total. Each PIM core is a 32-bit RISC processor @450MHz.

In this architecture, scheduling of PIM modules are done by the user program.

Results Comparing with Prior PIM-based Indexes

38

Predecessor() Throughput

on Zipf workloads

Up to 59X improvement !

Results Comparing with CPU-based Indexes

39

Experiments on Wikipedia dataset Over SOTA Shared-memory Indexes

* Bars are throughputs; ‘+’ are communications

Less communication, faster inserts

New Early-Stage Results in Bandwidth

40

• Optimize communication for small batches

• Scatter/Gather buffers of 1~1024 KB with all DPUs

• 32 ranks, 2000 PIM modules functioning

New Early-Stage Results in Throughput

41

• Applying new interface on Wikipedia dataset

• 32 ranks, 2000 PIM modules functioning

• upmem-sdk-light

@ github

Predecessor Insert
0

5

10

15

20

25

T
h

ro
u

g
h

p
u

t
(M

o
p

/s
)

19

6

25

7

Default Int erface

Opt im ized Int erface

Key Takeaways
• PIM emerging as means of reducing data movement

• Prior works of PIM indexes vulnerable to skew

• PIM-tree is a skew-resistant database index

• Three-level Structure: Different replication strategies

• Push-pull search: Lightweight load balance

• Chunking: Further reduction on communication

• Provable and practical efficiency

• Codes: https://github.com/cmuparlay/PIM-tree

Space

Efficient

Low
Communica-

tion

Load-
balance



Ideal Memory

43

Scalable

Capacity

Shared

memory

Low-cost

Access

Traditional

Main Memory

Processing-in-Memory

High-Bandwidth Memory

B-tree? Skip lists?
• Both are used in practice

• Skip lists used in the memory part for LSM trees

• We believe our optimizations apply to both

• B-tree can be interesting future work.

• In our implementation

• L3 is implemented by a b-tree

• L2 and L1 are implemented by skip lists

– Enables easier parallel inserts/deletes

44

	Diapositive 1 PIM-tree: A Skew-resistant Index for Processing-in-Memory
	Diapositive 2 The Memory Wall Problem
	Diapositive 3 The Memory Wall Problem
	Diapositive 4 The Memory Wall Problem
	Diapositive 5 The Memory Wall Problem
	Diapositive 6 Processing-in-Memory (PIM)
	Diapositive 7 The Processing-in-Memory Model*
	Diapositive 8 The Processing-in-Memory Model
	Diapositive 9 The Processing-in-Memory Model
	Diapositive 10 Pointer-Chasing Index
	Diapositive 11 Prior Work: PIM-based Ordered Indexes*
	Diapositive 12 Drawbacks of Range Partitioning Indexes*
	Diapositive 14 Drawbacks of Range Partitioning Indexes*
	Diapositive 15 Alternative Approach: Random Mapping
	Diapositive 16 Alternative Approach: Random Mapping
	Diapositive 17 Designing PIM-based indexes
	Diapositive 18 Designing PIM-based indexes
	Diapositive 19 Our Work in a Nutshell
	Diapositive 20 Taking Insight from Trees
	Diapositive 21 Two-Layer Structure: Replicated upper part
	Diapositive 22 Powerful Upper Part: Load-balance & Comm.
	Diapositive 23 Challenge: Node-wise Contention on Lower Part
	Diapositive 24 Solution: Push-Pull Search
	Diapositive 25 Shadow Subtree: Partial Replication
	Diapositive 26 Shadow Subtree: Partial Replication
	Diapositive 27 Shadow Subtree: Partial Replication
	Diapositive 28 Shadow Subtree: Partial Replication
	Diapositive 29 Shadow Subtree: Partial Replication
	Diapositive 30 Shadow Subtree: Partial Replication
	Diapositive 31 PIM-tree Structure: Three-layer
	Diapositive 32 Results of the Three-layer Structure
	Diapositive 33 Results of the Three-layer Structure
	Diapositive 34 Chunking : Further Horizontal Locality
	Diapositive 36 Results in The PIM Model
	Diapositive 37 Experimental Platform
	Diapositive 38 Results Comparing with Prior PIM-based Indexes
	Diapositive 39 Results Comparing with CPU-based Indexes
	Diapositive 40 New Early-Stage Results in Bandwidth
	Diapositive 41 New Early-Stage Results in Throughput
	Diapositive 42 Key Takeaways
	Diapositive 43 Ideal Memory
	Diapositive 44 B-tree? Skip lists?

