
vPIM : virtualized Processing-In-Memory
 Jiaxuan Chen1, Dufy Teguia2, Oana Balmau1, Stella Bitchebe1, Alain Tchana2

ABUMPIMP Minisymposium, 2024/08/26

1. McGill University 2. Université Grenoble Alpes



Goal

● PIM is a solution to solve the data movement problem in applications

● Commercial PIM hardware should be available in the cloud

● Virtualized devices can be shared by multiple Linux virtual machines

2



Terminology

x2
UPMEM PIM rank of 64 DPUS, 4GB MRAM

PIM 
Chip

PIM 
Chip

PIM 
Chip

PIM 
Chip

… PIM 
Chip

Native/Virtualized environment: The environment is/is not virtualized

DIMM (Dual In-line Memory Module): Is a physical memory module with either one or 
2 sides. UPMEM PIM DIMM has two sides, called ranks.

3

VMM: A process in which the virtual machine is being run

KVM: Linux Kernel Module for virtualization.



Native Application Execution Example

4



Native Application Execution Example

5



PIM Virtualization Challenges

How to expose the device to the VM?

How to let the VM communicate with 
the real hardware?

What optimizations can we do to the 
virtualized model?

6



vPIM Architecture

7

●

Frontend Driver  
● A kernel module in the guest OS 

● Accepts requests from guest SDK

● Transfer requests through KVM



vPIM Architecture

8

Backend Device
● A module in the VMM (Firecracker)

● Accepts requests from frontend driver 

● Perform operation via physical device



vPIM Architecture: Rank Manager

9

Device Manager
● A host program that allocates available 

physical ranks to virtual machines. 

Characteristics
● Ensure ranks are allocated in a 

controlled manner for VMs or other 

applications on host. 

● Ensures isolation between VMs.



Frontend to Backend: Virtio Transport layer

Virtqueue is a queue which:

● Is part of guest memory, registered in the 
KVM, accessible by the VMM.

● Saves the addresses of the guest buffers. 

● The VMM can access these buffers by 
address translation.

10

virtqueue

Virtio driver

Virtio device

Guest

VMM



Here we use rank reading/writing as an example to explain request transfer in the frontend.

Data transfer to the MRAM of DPU is formatted as a matrix of pages.

Frontend to Backend: Rank Operations

struct dpu_transfer_mram {

   struct xfer_page *xferp[64];

   uint32_t offset_in_mram;

   uint32_t size;

};

struct xfer_page {

   struct page **pages;

   unsigned long nb_pages;

   int off_first_page;

};

11

One xfer_page can contain: (mram_size)/(page_size) = 16384 pages



To avoid direct memory copy:

Linux pages are converted to physical addresses in the VM (Guest Physical Addresses). 

VMM can access the memory region of these addresses by address translation.

Frontend to Backend: Matrix Serialization

scatterlist0 scatterlist1Virtqueue

request meta data 
for the matrix

struct xfer_page{
    nb_pages = 64
    offset = …
}

scatterlist2 scatterlist3

struct addr_table{
    uint64_t *address
}

scatterlist4 scatterlist5 …

struct xfer_page{
    nb_pages = 1
    offset = …
}

struct addr_table{
    uint64_t *address
}

12



vUPMEM Characteristics:

● Device attributes (mram size, serial number…) read from sysfs
● Physical rank device memory mapping 
● Operations that are performed as a request (or not) of the Guest VM

13

Virtqueue …

Backend Operates Host Device



Problem: Small-size Data Transfers

14

Native vPIM

overhead

Lower is better



Problem: Small-size Data Transfers

→ Each requests requires a VMEXIT, no matter data transfer size.

→ In small-size data transfers, communication dominates the execution time.

15

Frequent small-size data transfer results in repetitive VMEXIT, 

causing a significant performance bottleneck.



Optimizations: Small-size Data Transfers

● Prefetch Cache proactively caches larger segments when the requested data is too small. 

● Request Batching buffers small-size write-to-rank requests, which are then collectively 
flushed to the backend.

16

NW

Optimizations



Evaluation

Benchmark: We evaluate our system using the PrIM 
Benchmarks, using the strong scaling configuration 

Metric: Execution time and virtualization overhead 
compared to the native.

Config: 1 rank (60 DPUs) and 8 ranks (480 DPUs) 

17

BS Binary Search

TS Time Series Analysis

MLP Multilayer Preceptron

HST-L Image Histogram 

TRNS Matrix Transposition

NW Needleman-Wunsch

Table 1. Selected 
PrIM Benchmark Applications 

https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/CMU-SAFARI/prim-benchmarks


Native vs vPIM Execution 

18

Overhead, closer is better



Native vs vPIM Execution 

19

Overhead, closer is better

The overhead of vPIM is up to 1.15 in suitable applications



Native vs vPIM Execution 

NW: 65000 160-byte transfer operations. 

TRNS: 980000 512-byte transfer operations.
20



Native vs vPIM Execution 

NW: 65000 160-byte transfer operations. 

TRNS: 980000 512-byte transfer operations.
21

Rewritten NW Applicaton is only 
1.2x slower than the native 



Takeaways
- vPIM is a solution for UPMEM PIM virtualization. Applications can run unmodified.

- Overhead is low for apps that have dominating DPU execution time 
and do not have frequent small-size data transfers.

- For the other scenarios, vPIM aggregates data transfers with batching and prefetching.

22

Thank you!

Contact the authors for more information ! 

Funded by the PAI2021 "Fault tolerance for Disaggregated 
Rack-Scale Computing”, and the Natural Sciences and 
Engineering Research Council of Canada 

brice.teguia-wakam@univ-grenoble-alpes.fr 
jiaxuan.chen2@mail.mcgill.ca

mailto:brice.teguia-wakam@univ-grenoble-alpes.fr
mailto:jiaxuan.chen2@mail.mcgill.ca


APPENDIX



Evaluation: PrIM Benchmarks

16 applications are evaluated in total.

60 DPU config:

Overhead: 1.01x (BS) to 2.07x (NW), 

averagely 1.24x

480 DPU config:

Overhead: 1.02x (MLP) to 2.89 (TRNS),

averagely 1.54x

24



Evaluation: PrIM Benchmarks

Observation 2: Significant overhead in the 
Inter-DPU step of SCAN-RSS, SCAN-SSA 
and RED.

This is a scenario showing the drawback of 
the Prefetch Cache. 

25



Optimizations: Rank operations overhead

Problem 1:

→ Firecracker is written in Rust. Which is slower than C for rank operations

Problem 2:

→ The Firecracker event manager handles requests one by one

26



Frontend: forward from guest to the backend

27

Frontend Driver  
● A kernel module in the guest OS 

● Accepts requests from guest SDK

● Transfer requests to backend driver

① SDK ←→ Frontend Driver:
   The Frontend Driver exposes the device to the 

guest userspace and receive request from the SDK

② Virtio:
   The Frontend sends requests to the backend by 

generating an event in the KVM following the virtio 

specification.



Backend: Execute the request on real hardware

28

Backend
● A module in the VMM (Firecracker)

● Accepts requests from frontend driver 

● Perform operation via physical device

③ Backend ←→Host Device:
   The Backend controls the UPMEM hardware using 

direct memory access.

④ Backend writes Guest memory:
   The Backend writes the results of the requests to 

the memory of the Frontend via the physical address 

sends by the Frontend.



Evaluation: PrIM Benchmarks

Observation 2: For 4 in 16 applications, 
execution time increases with more DPUs 
both in vPIM and native. 

These applications use serial data transfer, 
which leads to increase data transfer time.

In addition, serial data transfer cannot fully 
benefit from the optimization methods: request 
batching, prefetch cache and multithreading 
handling, resulting in higher overhead.



 Firecracker Handlers: Handle Request

Request handling workflow

Signal event handler Device Request 
manager

Rank handler

Control 
interface

Request 
config



 Firecracker Handlers: More on Backend - Request Config

● The Backend here just sends the information that 
has been gathered during the device initialization 
(from sysfs)

● These are sent to configure the driver and expose 
the same informations to the guest machine for a 
seamless usage



 Firecracker Handlers: More on Backend - CIs

● We are using SIMD 
AVX2 (not AVX512)

● We use non temporal 
stores to bypass the 
cache when writing data

● We make a volatile read 
on CI data



 Firecracker Handlers: More on Backend - transfer matrix



 Firecracker Handlers: More on Backend - Write to rank

The write to rank operation consists of getting a transfer matrix from the Guest main 
memory and then write then down in the rank MRAM. 
This is done using 8 DPUs (1 DPU per CI) of the same index (from 0 to 7) per loop. In 
each loop we do : 

● We set the current page to be written in the rank
● We perform a write for each 8 bytes-blocks per CI 
● Before committing the write, we perform a byte interleaving (avx2) to fit memory 

requirements
● We do this until we reach the number of pages and the amount of data

NB : We use non temporal stores to bypass the cache



 Firecracker Handlers: More on Backend - Write to rank

NB : The goal behind byte interleaving is to be able to write one byte at 8 different places in one 
single operation (avx512) or two operations (avx2)

● The write to rank operation consists of 
getting a transfer matrix from the Guest main 
memory and then write then down in the 
rank MRAM. 

● The figure presents how data for 8 CIs (8 
bytes each) are written



 Firecracker Handlers: More on Backend - Read from rank

The read from rank operations follows the same pattern except that we read data per 
8 bytes-blocks

The figure presents how data for 8 CIs (8 bytes 
each) read



② Virtio Transport layer: CI Operations

37

Control Interface:

Control interface (CI) is a array of uint64_t of size 8

There are two operations can be called by the UPMEM SDK

write_to_cis: write command/program to the dpu

read_from_cis: retrieve the current CIs content from the hardware

The Frontend Driver forwards these operations to the backend for further processing.



How is the request structured?

② Virtio Transport layer: CI Operations



scatterlist0 scatterlist1

Write to CI:

Virtqueue scatterlist0 scatterlist1

Read from CI:

Virtqueue

read-only:
struct request{
    request_type=WRITE_CI
    payload = CI_SIZE
}

read-only:
struct CI_array{
    uint64_t control_interface[8];
}

read-only:
struct request{
    request_type=READ_CI
    payload = CI_SIZE
}

write-only:
struct CI_array{
    uint64_t control_interface[8];
}

② Virtio Transport layer: CI Operations



Rank Manager

40

Workflow 
● A VM request a rank available 

● Manager checks either a free rank* to attach to 

the running VM

● The manager detects when a rank is freed and 

resets its content. 

● The currently implemented algorithm is round 

robin

Next step 
● Ranks cannot be shared at the DPU granularity 

for the moment. 

● There is another ongoing work that aims to 

improve application colocation within the same 

rank.


