o v

McGill LSz

LABORATOIRE D'INFORMATIQUE DE GRENOBLE

La Region
Auvergne-Rhone-Alpes

VvPIM : virtualized Processing-In-Memory

Jiaxuan Chen’, Dufy Tequia?, Oana Balmau’, Stella Bitchebe', Alain Tchana?

ABUMPIMP Minisymposium, 2024/08/26

1. McGill University 2. Université Grenoble Alpes

Goal

e PIMis a solution to solve the data movement problem in applications
e Commercial PIM hardware should be available in the cloud

e \irtualized devices can be shared by multiple Linux virtual machines

Terminology

Native/Virtualized environment: The environment is/is not virtualized

DIMM (Dual In-line Memory Module): Is a physical memory module with either one or
2 sides. UPMEM PIM DIMM has two sides, called ranks.

UPMEM PIM rank of 64 DPUS, 4GB MRAM

— X2
PIM PIM PIM . PIM (1Y
Chip Chip Chip Chip Chip

VMM: A process in which the virtual machine is being run

KVM: Linux Kernel Module for virtualization.

Native Application Execution Example

DPU_FOREACH(set, dpu, dpu_count) {
dpu_prepare_xfer(dpu, &array[dpu_count * each_size]);
}
dpu_push_xfer(set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0,
each_size * sizeof(uint32_t), DPU_XFER_DEFAULT);

Native Application Execution Example

DPU_FOREACH(set, dpu, dpu_count) {

Process

dpu_prepare_xfer(dpu, &array[dpu_count * each_size]);

}

dpu_push_xfer(set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0,
each_size * sizeof(uint32_t), DPU_XFER_DEFAULT);

Host app Host library
|
Host kernel V=
‘ File in /dev]
UPMEM Driver }»-—‘
‘ ‘ sysfs]

L

L]
b33 /
J >

UPMEM device

PIM Virtualization Challenges

VMM (Flrecracker)

How to expose the device to the VM?

Guest userspace . Guest kernel
Process
. . Host app :
How to let the VM communicate with — :
the real hardware? :

7??

Host
kernel

Native
Apps

What optimizations can we do to the
virtualized model?

UPMEM device

vPIM Architecture

VMM (Flrecracker)

F ronte nd D river Guest userspace . Guest kernel

e Akernel module in the guest OS N T JPMEM device
Process ' :
e Accepts requests from guest SDK Host app o o Frontend o Backend
e Transfer requests through KVM i) N E— ! e‘\
| | ' ‘r_‘
Host (=] |
DPU_FOREACH(set, dpu, dpu_count) { | kemel K::M vovEM | | Feniey } e
dpu_prepare_xfer(dpu, &array[dpu_count * each_size]); Driver [———— Apps
} ‘ sysfs
dpu_push_xfer(set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, | l I——
each_size * sizeof(uint32_t), DPU_XFER_DEFAULT);
UPMEM device

vPIM Architecture

Backend Device
e A module in the VMM (Firecracker)
e Accepts requests from frontend driver

e Perform operation via physical device

DPU_FOREACH(set, dpu, dpu_count) {
dpu_prepare_xfer(dpu, &array[dpu_count * each_size]);
}
dpu_push_xfer(set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0,
each_size * sizeof(uint32_t), DPU_XFER_DEFAULT);

VMM (Flrecracker)

Guest userspace . Guest kernel

Process H

Host app] o : o

Backend

Host lib : A
| 73 N
kt::’:él ¥ ‘ File in /dev ’
o] [
Driver
sysfs
UPMEM device

Native
Apps

vPIM Architecture: Rank Manager

Device Manager VMM (Flrecracker)

. Guest userspace . Guest kernel
e Ahost program that allocates available e | A _
Process » : 3
hysical ranks to virtual machines. - . ;
pny Host app e ~> Frontend | e Backend
Host lib S l | SR
Characteristics I(2) © ©
e Ensure ranks are allocated in a | o
k:?'f; | File in /dev |
controlled manner for VMs or other ’ KVM ‘ ‘ U }._ e
. . sysfs
applications on host. l , |—|
UPMEM device

e Ensures isolation between VMs.

Frontend to Backend: Virtio Transport layer

[Virtio driver Guest }

Virtqueue is a queue which:

e Is part of guest memory, registered in the
KVM, accessible by the VMM.

e Saves the addresses of the guest buffers.

e The VMM can access these buffers by
address translation.

virtqueue }

|
|

Virtio device VMM }

10

Frontend to Backend: Rank Operations

Here we use rank reading/writing as an example to explain request transfer in the frontend.

Data transfer to the MRAM of DPU is formatted as a matrix of pages.

struct dpu transfer mram { int size int nb_pages

: . struct page **pages;
struct xfer page *xferpl[64]; int olfset ntefisa)
uint32 t offset in mram; T I
uint32 t size; G ﬁ(- 1
bs DPUO: Metadata Page0 Page1
|
DPU1: Metadata Page0 Page1
struct xfer page {
struct page **pages;
unsigned long nb_pages; DPU63: Metadata Page0 Page1

int off first page; s
) One xfer_page can contain: (mram_size)/(page_size) = 16384 pages

11

Frontend to Backend: Matrix Serialization

To avoid direct memory copy:

Linux pages are converted to physical addresses in the VM (Guest Physical Addresses).

VMM can access the memory region of these addresses by address translation.

VI rtq ueue scatterlistO scatterlist1 scatterlist2 scatterlist3 scatterlist4 scatterlist5
struct xfer_page{ struct addr_table{ struct xfer_pa_ge{ stru_ct addr_*table{
= . " nb_pages = 1 uint64_t *address
request meta data nb_pages = 64 uint64_t *address offset = }
for the matrix offset = ... })

}

12

Backend Operates Host Device

int size int nb_pages
int offset int offset

struct page **pages;

Metadata I
[
. DPUO: Metadata Page0 Page1
Virtqueue
DPU1: Metadata Page0 Page1
DPUG3: Metadata Page0 Page1

vUPMEM Characteristics:

e Device attributes (mram size, serial number...) read from sysfs
e Physical rank device memory mapping
e Operations that are performed as a request (or not) of the Guest VM

13

Problem: Small-size Data Transfers

Exec Time (ms)

I Native 224 vPiv
overhead
10* Nw
4.88 -c
<
Q
3.25 - £
>
1.63 © |
8.49 Lower is better

14

Problem: Small-size Data Transfers

— Each requests requires a VMEXIT, no matter data transfer size.

— In small-size data transfers, communication dominates the execution time.

Frequent small-size data transfer results in repetitive VMEXIT,

causing a significant performance bottleneck.

15

Optimizations: Small-size Data Transfers

Prefetch Cache proactively caches larger segments when the requested data is too small.

Request Batching buffers small-size write-to-rank requests, which are then collectively
flushed to the backend.

] cpu-pPU [DPU | | Inter-DPU [] DPU-CPU @ Perf Inc
@ 104 NW Q
E —
(]

£ 7 s &
=g | B
o = o
S 0 B - =
3 vPIM-C vPIM+P vPIM+B vPIM+PB o

Optimizations

16

Evaluation

Benchmark: We evaluate our system using the PrllV

Benchmarks, using the strong scaling configuration

Metric: Execution time and virtualization overhead
compared to the native.

Config: 1 rank (60 DPUs) and 8 ranks (480 DPUs)

Table 1. Selected

PrIM Benchmark Applications

BS

TS

MLP

HST-L

TRNS

NW

Binary Search

Time Series Analysis
Multilayer Preceptron
Image Histogram
Matrix Transposition

Needleman-Wunsch

17

https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/CMU-SAFARI/prim-benchmarks

Native vs vPIM Execution

I native-CPU-DPU [native-DPU
Bz vPIM-CPU-DPU vPIM-DPU

[] native-Inter-DPU
vPIM-Inter-DPU

B native-DPU-CPU
B2z vPIM-DPU-CPU

Overhead, closer is better

100 T8 MLP
1.08 3,540
0.72 2,360
0.36 1,180

(U]
(e

Exec time (ms)
RO N
— N
S ©

18

Native vs vPIM Execution

I native-CPU-DPU [native-DPU [] native-Inter-DPU B native-DPU-CPU
Bz vPIM-CPU-DPU vPIM-DPU vPIM-Inter-DPU B2z vPIM-DPU-CPU

Overhead, closer is better

ot B 40f TP MLP HST-L
£077 ¢ 1.08 3,540 £ 630
£0.51 0.72 2,360 £ 420 .
3 0.26 0.36 1,180 3210
& &
60 480 60 480 480 60 480
#DPUs #DPUs #DPUs #DPUs

The overhead of vPIM is up to 1.15 in suitable applications

Native vs vPIM Execution

I native-CPU-DPU [native-DPU [1 native-Inter-DPU I native-DPU-CPU
Bz vPIM-CPU-DPU vPIM-DPU vPIM-Inter-DPU B2z vPIM-DPU-CPU
NW
106 TRNS 10
/w\ 1
E 124 1.42
Q
£ 083 0.95
§ 0.41 0.47
84|
60 480 60 480
#DPUs #DPUs

NW: 65000 160-byte transfer operations.

TRNS: 980000 512-byte transfer operations.

Native vs vPIM Execution

I native-CPU-DPU [native-DPU [1 native-Inter-DPU I native-DPU-CPU
Bz vPIM-CPU-DPU vPIM-DPU vPIM-Inter-DPU gz vPIM-DPU-CPU
106 TRNS 106 MW
E 1.24 1.42
Q
g 0.83 0.95
§ 0.41 0.47
83
60 480 60 480
#DPUs #DPUs
NW: 65000 160-byte transfer operations. Rewritten NW Applicaton is only

TRNS: 980000 512-byte transfer operations. 1.2x slower than the native

Takeaways

- VPIM is a solution for UPMEM PIM virtualization. Applications can run unmodified.

- Overhead is low for apps that have dominating DPU execution time
and do not have frequent small-size data transfers.

- For the other scenarios, vPIM aggregates data transfers with batching and prefetching.

Contact the authors for more information !

Thank you! [_EEH:E] [E
i

brice.teguia-wakam@univ-grenoble-alpes.fr
jlaxuan.chen2@mail.mcgqill.ca

-
| (=55

Funded by the PAI2021 "Fault tolerance for Disaggregated
Rack-Scale Computing”, and the Natural Sciences and
Engineering Research Council of Canada

22

mailto:brice.teguia-wakam@univ-grenoble-alpes.fr
mailto:jiaxuan.chen2@mail.mcgill.ca

APPENDIX

Evaluation: PrIM Benchmarks

16 applications are evaluated in total.

60 DPU config:

Overhead: 1.01x (BS) to 2.07x (NW),

averagely 1.24x

480 DPU config:

Overhead: 1.02x (MLP) to 2.89 (TRNS),

averagely 1.54x

[native-CPU-DPU
Bzz vPIM-CPU-DPU

[native-DPU
vPIM-DPU

[native-Inter-DPU
vPIM-Inter-DPU

I native-DPU-CPU
EZE vPIM-DPU-CPU

468 B8
1.08
0.36
60 480
HST-L
%630 1.24
£420 0.83
3210 0.41
>
m
60 480
#DPUs

0.72 |

10t TS MLP
7 3,540
/ 5
é 2,360
a 1,180
Z |7
60 480 60 480
06 TRYS 106 W
1.42
0.95
0.47
60 480 60 480
#DPUs #DPUs

Evaluation: PrIM Benchmarks

[native-CPU-DPU
wzza vPIM-CPU-DPU

native-DPU
vPIM-DPU

[native-Inter-DPU
tzZzzz2 vPIM-Inter-DPU

I native-DPU-CPU
Bz vPIM-DPU-CPU

10+ BS g0+ TS MLP VA
%0.77 1.08 | ? 3,540 780
E051 | 072 | g 2,360 520
Observation 2: Significant overhead in the 8026 [} 036 BF i LI 260
60 480 60 480 60 480
Inter-DPU step of SCAN-RSS, SCAN-SSA aST- camy SCAN-RSS
and RED E630 330 1,440 | 7 1,830
,;é 420 220 960 l % 1,220
. . . . é 210 110 480 B 610
This is a scenario showing the drawback of A& 50 60 50 60 450
SCAN-SSA RED TRNS NW
the Prefetch Cache. 2 i A0
E1,83 1,260 1.24 142
g1 840 0.83 0.95
é 610 J 420 0.41 0.47
= 60 48 60 480 60 480 60 480
_ 10+ SEL Q0+ ONI 10+ SPMV BFS
%1.38 14 1.89 1,500
E 0.92 093 - 1.26 |- 1,000 (-
é 0.46 0.47 0.63 500
= 60 480 60 480 60 480 60 480
#DPUs #DPUs #DPUs #DPUs

25

Optimizations: Rank operations overhead

Problem 1:
— Firecracker is written in Rust. Which is slower than C for rank operations

Problem 2:

— The Firecracker event manager handles requests one by one

BavPiM-Seq HEvPIM

0

1
8
16
4
2 . —
‘ 0

2 4 8 2 4 8
#Ranks #Ranks
(a) Whole application (b) write-to-rank operation

Exec time (s)
© U1
[« TN |
| |
|

Frontend: forward from guest to the backend

Frontend Driver
e Akernel module in the guest OS
e Accepts requests from guest SDK

e Transfer requests to backend driver

(D SDK «—— Frontend Driver:

The Frontend Driver exposes the device to the
guest userspace and receive request from the SDK
@ Virtio:

The Frontend sends requests to the backend by
generating an event in the KVM following the virtio

specification.

VMM (Firecracker)

Guest userspace Guest
_kernel |
Process o e
Host app ;;r rontend«——Backend| !
| Host lib A
| §

ie
Host

VUPMEM device

kernel

KVM

UPMEM |
driver

\ 4

YV VY

Manager

sysfs

<
in/dev J| :
Native
apps

UPMEM device

Backend: Execute the request on real hardware

Backend
e A module in the VMM (Firecracker)
e Accepts requests from frontend driver

e Perform operation via physical device

® Backend < —Host Device:

The Backend controls the UPMEM hardware using
direct memory access.
@ Backend writes Guest memory:

The Backend writes the results of the requests to
the memory of the Frontend via the physical address

sends by the Frontend.

VMM (Firecracker)

Guest userspace

Process

| Host lib

I

ie
Host

r Frontend i «——Backend|

VUPMEM device

kernel

KVM

UPMEM |
driver

\ 4

YV VY

Manager

sysfs

<
in/dev J| :
Native
apps

UPMEM device

Evaluation: PrIM Benchmarks

Observation 2: For4 in 16 app|ications, = :gtfmveggoleS j;‘g;;fg 3;;1;:5:::353 = 33?::353553
execution time increases with more DPUs 10t B 10t T ML VA

both in vPIM and native.

These applications use serial data transfer,

HST-L HST-S GEMV SCAN-RSS

which leads to increase data transfer time. 2
2630 | 330 1,440 1,830
a0 | 220 960 1,220
In addition, serial data transfer cannot fully 8210 | 1o 480 o0
. L. . 60 480 60 480 60 480 60 480
benefit from the optimization methods: request scan-ssa RED 1o TRIS 1 M

batching, prefetch cache and multithreading
handling, resulting in higher overhead.

Firecracker Handlers: Handle Request

Request handling workflow

event handler H Device H

Request
manager

}

Rank handler J

Request
config

an o e

Control
interface

Firecracker Handlers: More on Backend - Request Config

{ get runtime state J

-

q Read through
sysfs

v e The Backend here just sends the information that
ek T has been gathered during the device initialization
topology (from sysfs)

e These are sent to configure the driver and expose
the same informations to the guest machine for a
seamless usage

-/

h 4

Commit results
following the format

Configuration

Firecracker Handlers: More on Backend - Cls

e We are using SIMD
AVX2 (not AVX512)

e We use non temporal
stores to bypass the
cache when writing data

e \We make a volatile read
on Cl data

handle_commit_commands

h 4

extract the command
byte arrays for all Cls

4
Call the Xeon's impl
of commit
commands for
firecracker

(l/“\\.
-/

byte interleaving

This operation consists of
interleaving the elements of
the array.

UPMEM uses Intel's AVX512
intrinsics for that

We simply transpose the
matrix (unstable feature)

We lose some performances

Read from CI

The operation is similar
except that the array that we
read comes from the
mmaped arrea at that
specific address.

We also add a new operation
that consists of flushing the
cachelines containing the
values, in order to get the
up-to-date values

T

\

get the mmap
base address

Y

get the commands)
array (array of 8

s
) [u64 elements))

Commit commands

/apply the byte interleaving\
and write the resulting array
in the mapped region at a

G specific offset

Firecracker Handlers: More on Backend - transfer matrix

DPUO DPUO DPUO DPUO DPUO DPUO DPUO DPUO
Clo Cl1 Cl2 CI3 Cla CIS Cl6 CI7
Pagel |Pagel |Pagel |Pagel |Pagel |Pagel | Pagel | Pagel From the sdk point of view
we need to write them
per blocks of 8B
Page2 | Page 2 | Page 2 | Page 2 | Page 2 | Page 2 | Page 2 | Page 2
We aligned data into pages for
to make the transfer
easier (less overhead)
Page 3 | Page 3 | Page 3 | Page 3 | Page 3 | Page 3 | Page 3 | Page 3
The reading is done per block
per block of 8B in each page,
Page 4 | Page 4 | Page 4 | Page 4 | Page 4 | Page 4 | Page 4 | Page 4 we build an array of the

heading 8B blocks of each DPU

Firecracker Handlers: More on Backend - Write to rank

The write to rank operation consists of getting a transfer matrix from the Guest main
memory and then write then down in the rank MRAM.

This is done using 8 DPUs (1 DPU per CI) of the same index (from 0 to 7) per loop. In
each loop we do :

e \We set the current page to be written in the rank
e We perform a write for each 8 bytes-blocks per ClI

e Before committing the write, we perform a byte interleaving (avx2) to fit memory
requirements

e We do this until we reach the number of pages and the amount of data

NB : We use non temporal stores to bypass the cache

Firecracker Handlers: More on Backend - Write to rank

8B 8B 8B 8B 8B 8B

8B

8B

e The write to rank operation consists of
getting a transfer matrix from the Guest main

Byte interleaving
(avx2)

Byte interleaving
(avx2)

memory and then write then down in the v v
rank MRAM. 328 328
e The figure presents how data for 8 Clis (8
bytes each) are written) { _ {)
8B 8B 8B 8B 8B 8B 8B 8B

DPUOD DPUD1 DPUDZ DPUO3 DPUD4A DPUOS DPUDE DPUO7

NB: DPUOx means DPU of index 0 in the xth CI

NB : The goal behind byte interleaving is to be able to write one byte at 8 different places in one

single operation (avx512) or two operations (avx2)

Firecracker Handlers: More on Backend - Read from rank

The read from rank operations follows the same pattern except that we read data per
8 bytes-blocks

8B 8B 8B 8B 8B 8B 8B 8B

Byte interleaving

(avx2)

The figure presents how data for 8 Cls (8 bytes
each) read

8B 8B 8B 8B 8B 8B 8B 8B

DPUOD DPUO1 DPUOZ DPUDS DPUD4A DPUOS DPUOE DPUOD7

NB: DPUOx means DPU of index 0 in the xth CI

@ Virtio Transport layer: Cl Operations

Control Interface:
Control interface (Cl) is a array of uint64 _t of size 8

There are two operations can be called by the UPMEM SDK
write _to cis: write command/program to the dpu

read_from_cis: retrieve the current Cls content from the hardware

The Frontend Driver forwards these operations to the backend for further processing.

37

@ Virtio Transport layer: Cl Operations

frontend driver
e

SDK

application cal
[4

/dev/dpu_rank

I
>, file operation: ioctl

send reponse

<&

A 4

dpu_rank.c

dpu_virtio_mapping

triggers

send reponse

How is the request structured”

send request

Firecracker backend device

£ DR

Interrupt handler

dpu_rank_ioctl H
< E
read_from_ci ‘,-:-
E mutex locked
<
<
< send reponse r

-eeeeeq

r the mutex lock
send response

handler the request

A

send response

.-._.....-..._.I

@ Virtio Transport layer: Cl Operations

Write to CI: Read from CI:
V| rtq ueue scatterlistO scatterlist1 V| rtq ueue scatterlist0 scatterlist1
read-only: read-only: read-only: write-only:
struct request{ struct Cl_array{ struct request{ struct Cl_array{
request_type=WRITE_CI uint64_t control_interface[8]; request_type=READ_ClI uint64_t control_interface[8];
payload = Cl_SIZE } payload = CI_SIZE }
} }

Rank Manager

Workflow
e AVM request a rank available
e Manager checks either a free rank* to attach to
the running VM
e The manager detects when a rank is freed and
resets its content.
e The currently implemented algorithm is round
robin
Next step
e Ranks cannot be shared at the DPU granularity
for the moment.
e There is another ongoing work that aims to

improve application colocation within the same

rank.

VMM (Firecracker)

Guest userspace

Process

| Host lib

' Guest

. kemel |

' VUPMEM device

:: o ; \ A /
»Frontend «——Backend| '

ot I Manager

Host

kernel

KVM

in /dev

UPMEM | <
driver Native
Y

UPMEM device

40

