up mem

ABUMPIMP 2024

The 2nd Symposium on Applications and Benefits of UPMEM commercial Massively Parallel Processing-In-Memory Platform

DU

UPME

August 26, 2024

Copyright UPMEM® 2024

Overcome data and energy bottleneck thanks to PIM

Founded: 2015

Headquarters: Grenoble, France

Gilles Hamou CEO / Co-Founder

Track Record:

Co-owner @ Oscaro.com Scaled Oscaro.com to \$100M revenue from inception Founded & scaled Plantes-et-Jardins.com Senior Manager @ RSM Case Leader @ BCG

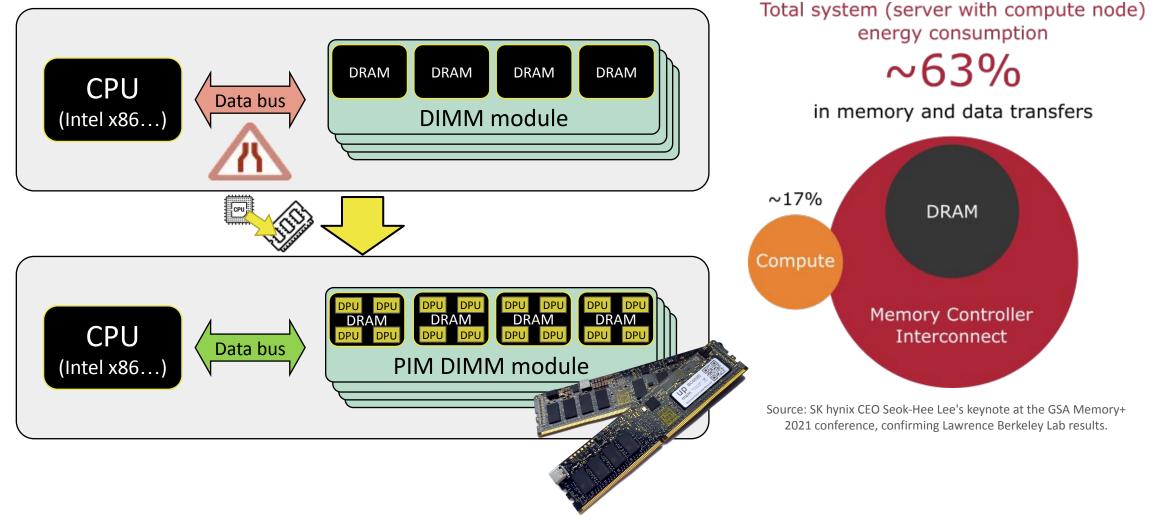
Education: MBA INSEAD

Eng. Centrale Paris

Employee Count: ~20

Total Patents: 11

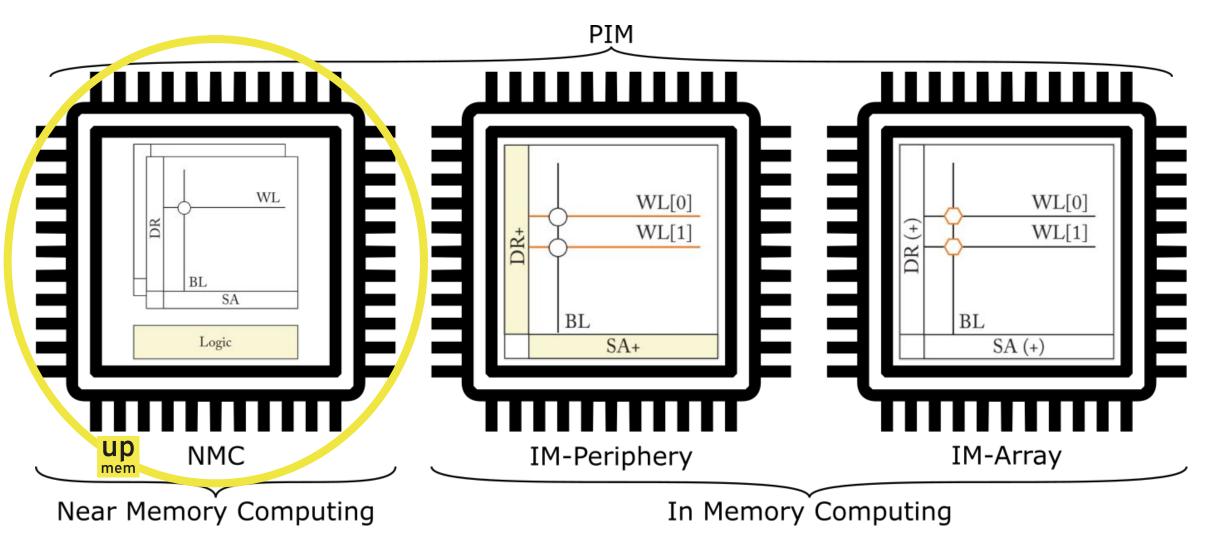
Fabrice Devaux CTO / Co-Founder


Track Record: Senior Staff SWE @ VMWare Co-owner, CTO @ Trango Virtual Processors, sold to VMware CPU Architect @ STMicroeletronics

Education:

DEA, Microelectronics, Pierre and Marie Curie University

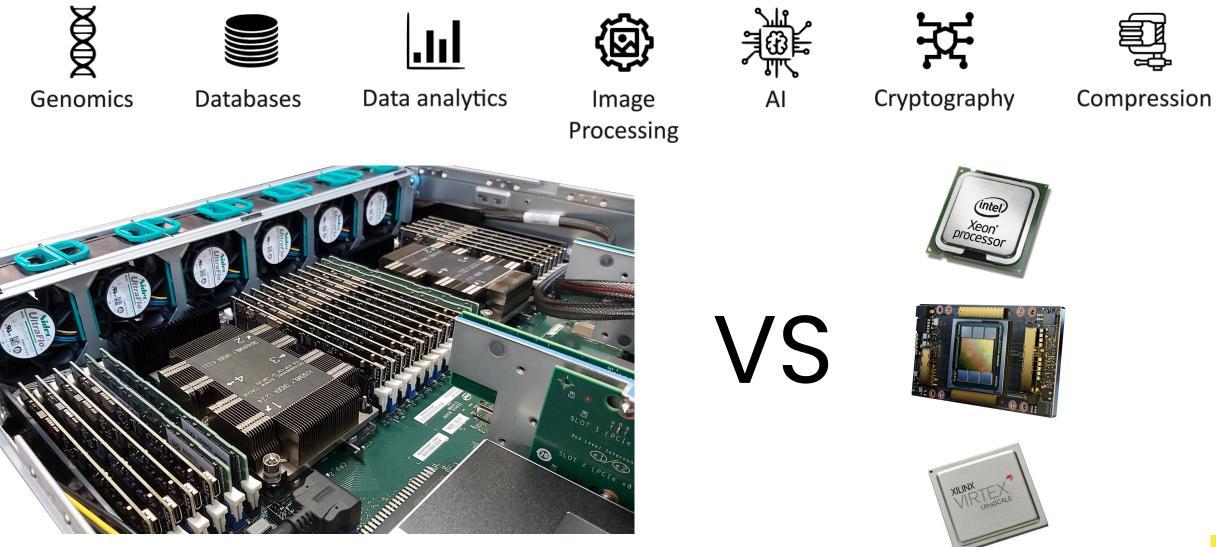
Overcome Limitations of Traditional Compute-Centric Architectures for Data-Intensive Workloads Thanks to Processing in Memory



up

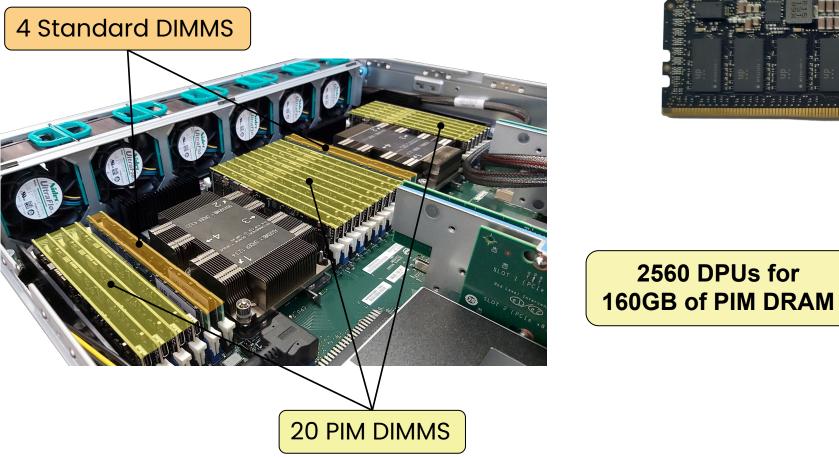
mem

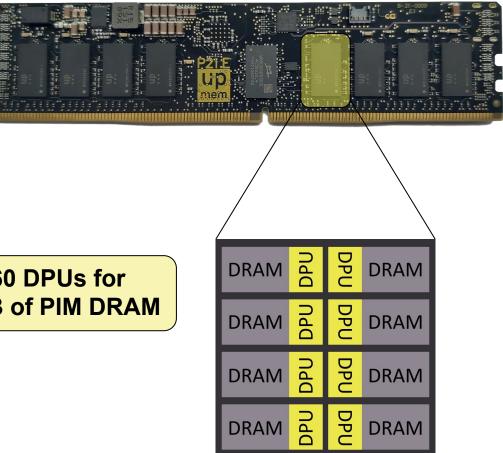
UPMEM


Taxonomy of processing in memory (PIM)

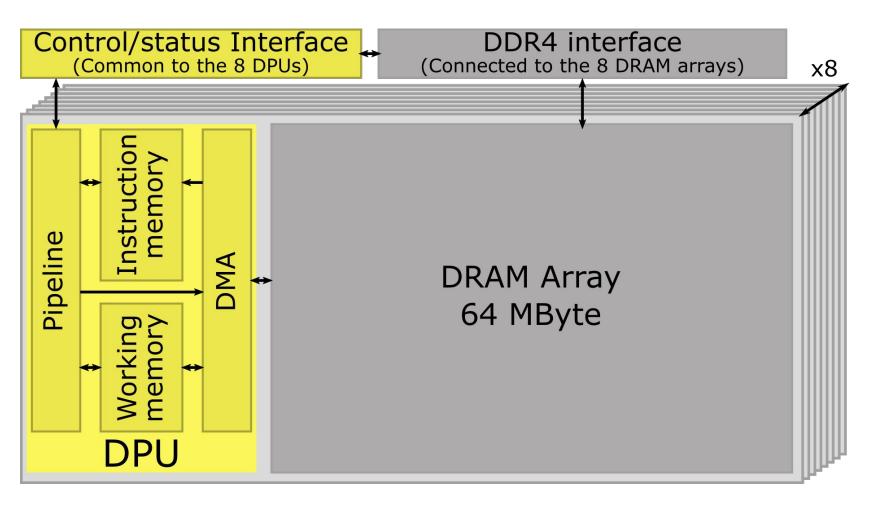
UPMEM

Proven capacity to benefit a wide range of applications





Technology Overview


Copyright UPMEM® 2024

A standard application server populated with PIM DIMMs

A DPU is a simple modern general-purpose processor

- Shared access with the host CPU to a DRAM bank
- Instruction and data caches replaced by instruction RAM and a Working RAM
- Independent and asynchronous
- 16 independent threads per DPU
- No direct communication channel among DPUs

A set of tools for smooth application porting

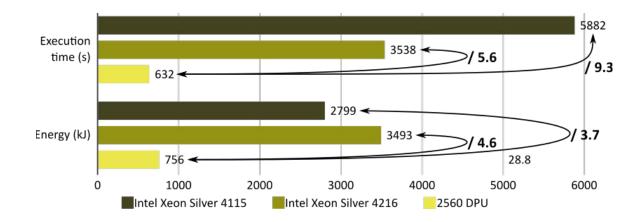
x86 program written in C, C++ or python with C functions to call routines on the DPUs

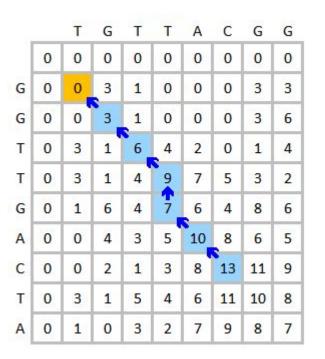
UPMEM SDK contains:

- A Full-featured runtime library for the DPU
- Management and communication libraries to encapsulate easily all the Host to DPU operations
- An LLVM based C-compiler using LLVM 12.0
- A LLDB based debugger
- Programming tools: profilers, simulator...
- Server BIOS binaries

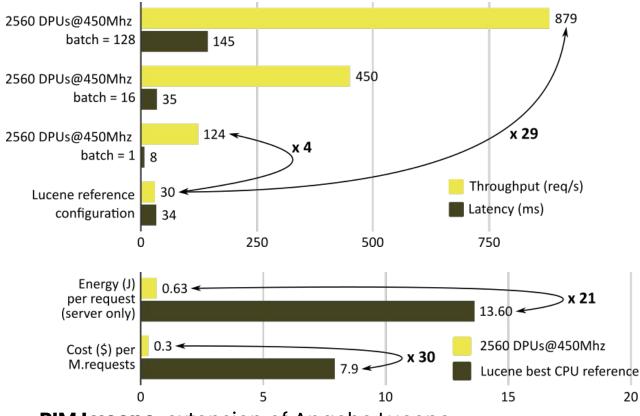
1,224,000 µs	1,224,500 µs	1,225,000 µs 1,225,500 µs
dpu_sync		dpu_sync
	dpu_copy dpu dpu dpu_sync_rat	nk dpu_cop
	dpu dpu dpu dpu_sync_rank	dpu
dpu dpu_copy_fr	dpu_copy_to_mrams dpu_copy	. dpu dpu dpu_sync_rank dpu_copy_fr
dpu_cop	dpu_copy dpu_copy_to_mrams	dpu dpu_sync_rank dpu_cop
dpu	dpu_copy_to_mrams dpu	_co dpu dpu dpu_sync_rank dpu_cop
d dpu_copy_fr	dpu_copy_to_mrams dpu_copy_to_mrams	dpu dpu_sync_rank dpu_cop
	dpu_copy_to_mrams d dpu dpu dpu_s	sync_rank dpu_copy_fr
	dpu dpu_copy d dpu dpu_sy	nc_rank dpu_cop
	dpu_copy_to_mrams d dpu dp	u_sync_rank dpu_cop
	dpu_co dpu_copy dpu dpu dpu	_sync_rank dpu_cop

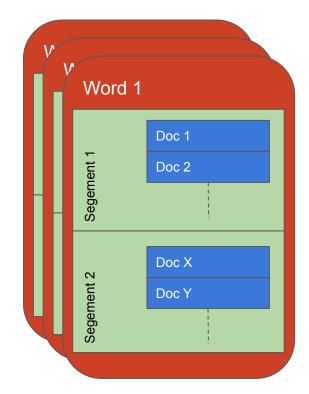
• Linux driver for x86 servers Validated on Redhat, Ubuntu and Debian.




Copyright UPMEM® 2023

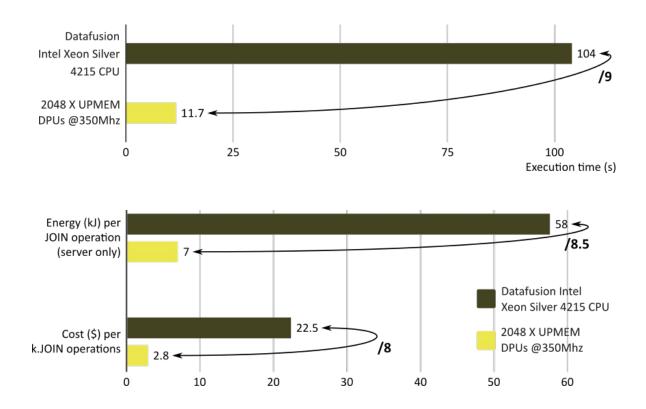
Genomics

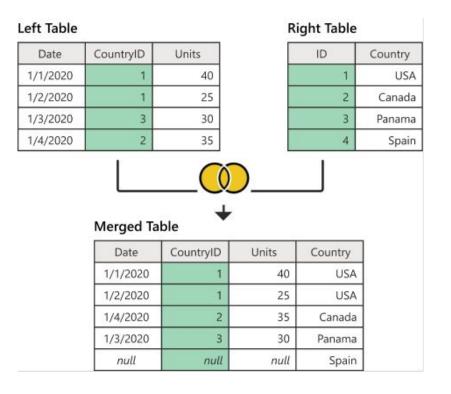

Long read alignment : adaptive KSW2


Analytics : Index Search

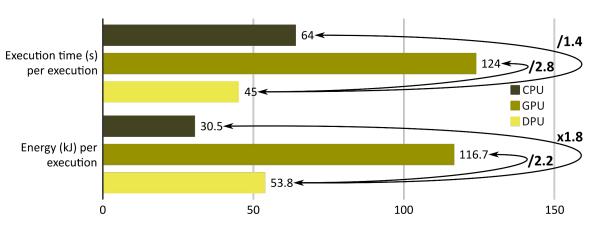
- An index search engine identifies items in a database from keywords specified by the user (web pages, text documents, e-commerce product...)
- UPIS: Engine for exact phrase match

• **PIM Lucene**: extension of Apache Lucene



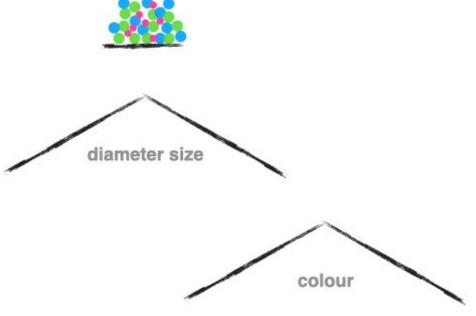

https://github.com/upmem/usecase_UPIS https://github.com/upmem/pim-lucene

Analytics : Hash Join


- Parallel hash-based join on DPU
- 4G rows per table (32GB of random data)

ML: K-means Clustering

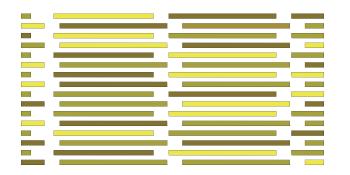
- **K-means** : partition the dataset into K distinct non-overlapping subgroups (clusters)
- ¼ days Criteo dataset

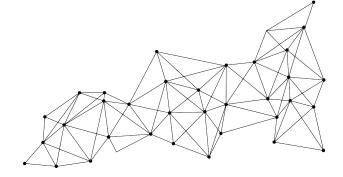


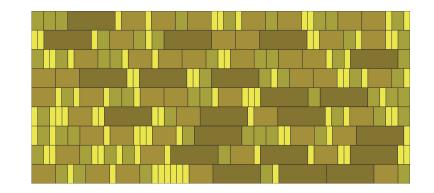
ML: Decision Trees

2 days Criteo dataset

• **CART** training implemented on DPU : builds a binary-search tree which represents a partitioning of the feature space


- 1045-Execution time (s) /41 per execution 25.6 CPU DPU 497-Energy (kJ) per /16 execution 30.6 10³ 10^{4} 10 100 1
- Next step: XGBoost on PIM, throughput implementation




animation: ml2gifs.substack.com https://github.com/upmem/scikit-dpu

•

Algo patterns when PIM deliver great acceleration

Highly parallel operations with fine granularity partitioning Irregular data access patterns Algorithms with data of different types and sizes, difficult to vectorise

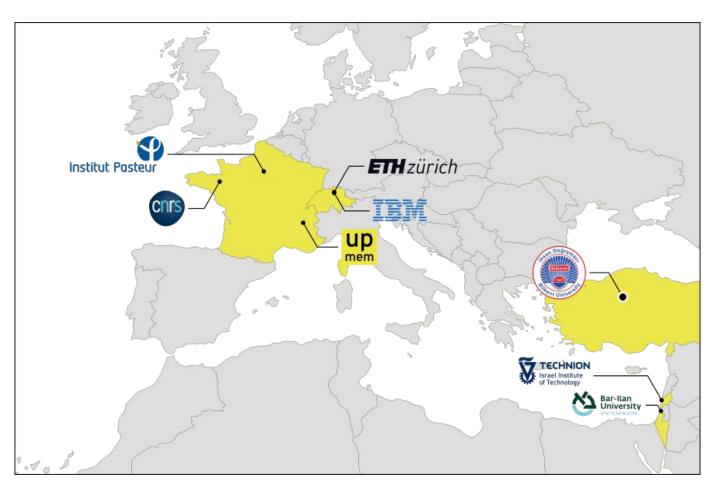
Research Projects

Copyright UPMEM® 2024

Research Projects

Collaborative projects

Processing-in-Memory for Genomics



Co-designing algorithms and data structures commonly used in bioinformatics together with several types of PIM architectures to obtain the highest benefit in cost, energy, and time savings.

K 353

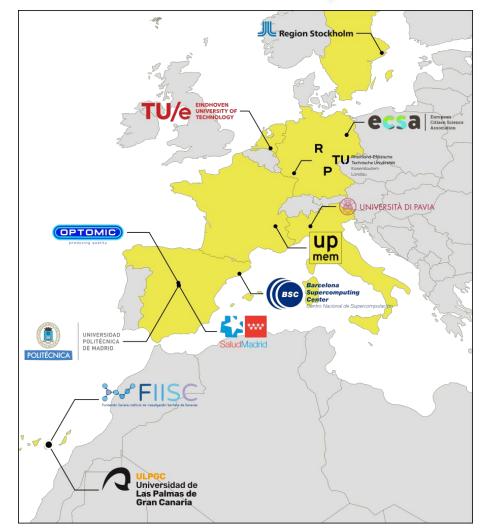
Coordinator	Bilkent Univ.	
Start	05/22	
Duration	4 years	
Type of action	EIC Pathfinder	
Total Budget	3 M€	
Target TRL	3-4	

Research Projects

Sust & InML

Sustainable, interactive ML framework development for Green AI that will comprehensively prioritize and advocate energy efficiency across the entire life cycle of an application and avoid AI-waste.

Coordinator	eProsima
Start	10/22
Duration	3 years
Type of action	HE-RIA
Total Budget	4.3 M€
Target TRL	4-5



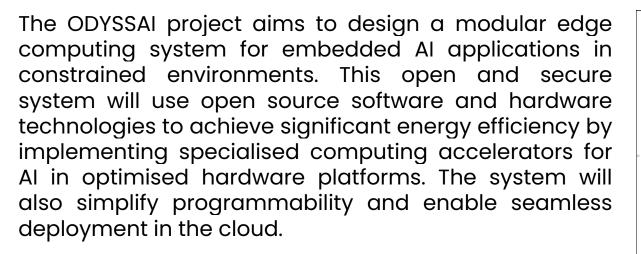
3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing through AI algorithms that will be integrated as an energy-efficient Point-of-Care computing tool.

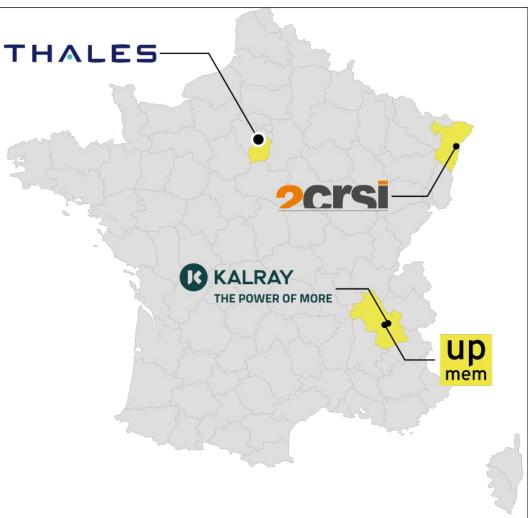
Coordinator	ULPGC
Start	01/12/2023
Duration	5 years
Type of action	HE-IA
Total Budget	10.7 M€
Target TRL	>7

Research Projects

ARCHYTAS

The ARCHYTAS project explores advanced Al accelerators for defense, using novel technologies like optoelectronics, processing in memory, and neuromorphic devices. It integrates these with CMOS systems in a multi-chip setup and develops new programming models for improved performance and productivity in parallel systems.


Coordinator	lveco DV
Start	01/25 _(TBC)
Duration	3 years
Type of action	EDF-RA
Total Budget	20 M€
Target TRL	<4



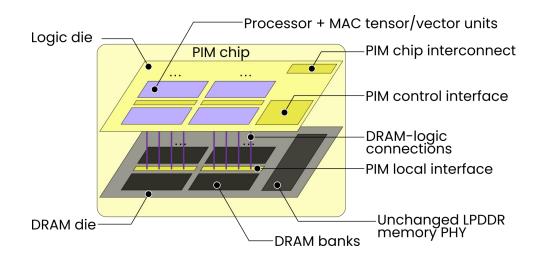
Research Projects

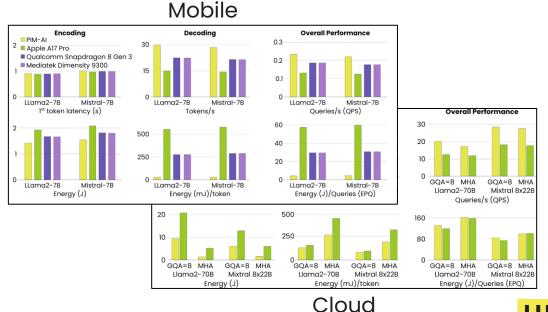
Coordinator	Thales	
Start	12/23	
Duration	3 years	
Type of action	FRANCE 2030	
Total Budget	7,87 M€	
Target TRL	6-8	

Technology Roadmap

Copyright UPMEM[®] 2024

Gen 1B PIM DRAM Modules


- Released last May
- Frequency increased to 400 MHz or up to 40% lower power consumption at same frequency (350 MHz)
- Host access to WRAM while the DPU owns the bank
- New HW monitoring features
- DPU switch off capability \rightarrow Idle consumption \searrow by 90%



Next-Generation Modules: PIM-AI

- Stacked Die Configuration:
 - Combining DRAM and logic dies in a single chip
 - 4 Linux-capable RISC-V processors
 - Tensor and vector units
- High Bandwidth and Low Energy Consumption:
 - 102.4 GB/s
 - Read/write energy consumption of just 0.95 pJ/bit
- Flexible Operation Modes:
 - Standard memory mode for conventional tasks
 - Accelerated PIM mode for performance-intensive AI operations
- Simulators
 - Pytorch simulator to be open sourced by the end of the year
 - QEMU and/or Gem5 simulator to be developed

Servers

From Skylake SP to Ice Lake SP

- Work in progress
- We expect to be able to ship these new servers by the end of the year

Exploration of Arm manycore processors

- Focus on Altra Ampere
- Part of the OdyssAl project

Investigation of other platforms

- Part of the STRATUM project
- Platforms not yet defined

Cloud infrastructure

In Numbers

- 10 servers
- 70 teams (+ 15)
- ~ 300 active users (+ ~100)
- ~ 40 000 hours booked (+ ~10 000)

Evolutions

- Gen 1B progressively deployed
- Service storage capacity (local disk, sftp for dataset pre-loading...)

Event Overview

Copyright UPMEM[®] 2024

Today's agenda

TIME	TITLE	SPEAKER(S)
09:00 - 09:15	Session welcome and aims	Yann FALEVOZ (UPMEM)
09:15 - 10:00	Keynote: UPMEM PIM platform for Data-Intensive Applications	Sylvan BROCARD (UPMEM)
10:00 - 10:30	Coffee break + Posters	—
10:30 - 11:00	Keynote: Next Generation UPMEM PIM DRAM for AI Applications	Cristobal ORTEGA (UPMEM)
11:00 – 11:22	Research paper: uPIMulator: A Flexible and Scalable Simulation Framework for General-Purpose Processing-In-Memory (PIM) Architectures	Bongjoon HYUN (KAIST)
11:23 – 11:45	Invited talk: Processing in Memory Virtualization	Dufy TEGUIA (UGA / Orange Innovation) / Jiaxuan CHEN (McGill University)
11:46 – 12:07	Research paper: SimplePIM: A Software Framework for Productive and Efficient Processing-in-Memory	Geraldo F. OLIVEIRA (ETHZ)
12:08 – 12:30	Research paper: High-level programming abstractions and compilation for near and in-memory computing.	Jeronimo CASTRILLON (TU Dresden)
12:30 - 13:30	Lunch Break + Posters	—
13:30 - 13:52	Research Paper: PID-Comm: A Fast and Flexible Collective Communication Framework for Commodity Processing-in-DIMMs	Si Ung NOH (Seoul National University)
13:53 – 14:15	Keynote: PIM Lucene	Sylvan BROCARD (UPMEM)
14:16 - 14:37	Research Paper: PIM-tree: A Skew-resistant Index for Processing-in-Memory	Hongbo KANG (Tsinghua University)
14:38 – 15:00	Research Paper: Enhancing Personalized Recommender Systems with PIM-Rec: Leveraging Processing-In-Memory Technology for Efficient AI	Niloofar ZARIF (University of British Columbia)
15:00 - 15:30	Coffee break + Posters	—
15:30 - 15:52	Research Paper: BIMSA: Accelerating Long Sequence Alignment Using Processing-In-Memory	Alejandro ALONSO-MARIN (BSC)
15:53 - 16:15	Research Paper: Compression of genomic data	Dominique LAVENIER (Univ. Rennes, CNRS-IRISA & Inria)
16:16 - 16:37	Research Paper: In-memory acceleration for HE with UPMEM PIM	Mpoki MWAISELA (University of Neuchâtel)
16:38 - 16:45	Closing	UPMEM

Useful links

- <u>Website</u>
- <u>Resource page</u>
- <u>Github</u>
- <u>SDK</u>

Thank you

Yann FALEVOZ, In charge of of Lab Relationship Management and Tech Marketing yfalevoz@upmem.com

Copyright UPMEM® 2024