

ABUMPIMP 2024

# Keynote: Next Generation UPMEM PIM DRAM for Al Applications

UPME



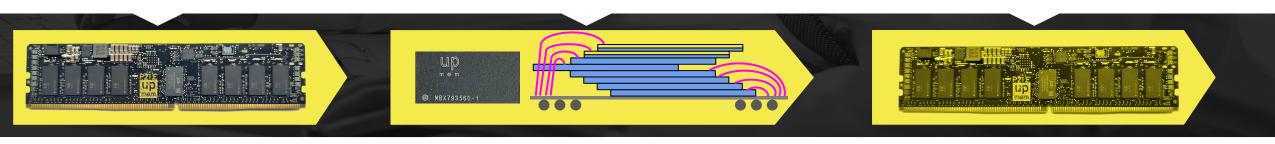
## Hardware Architecture

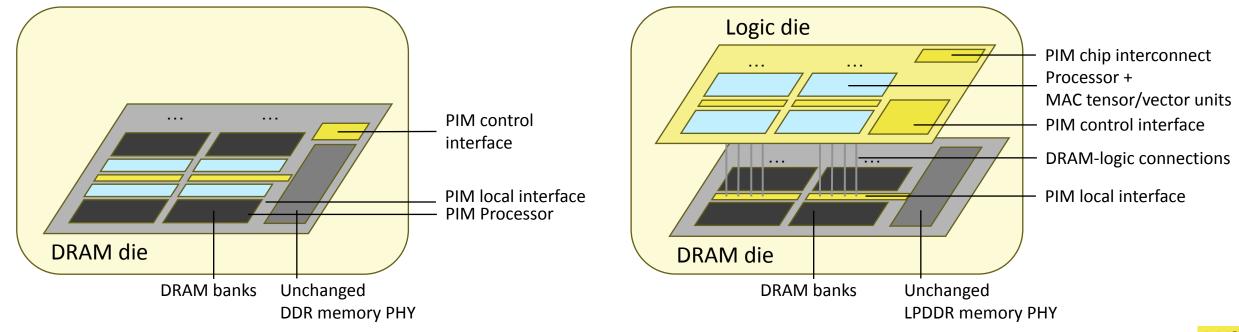
**UPMEM PIM AI - Hardware architecture** 

### **PIM-AI chip architecture overview**

Existing PIM DRR architecture Based on DDR4 DRAM design Target PIM AI LLM chip Based on LPDDR5 DRAM design

#### Target PIM AI LLM DIMM Based on DDR5 / LPDDR5 DRAM design







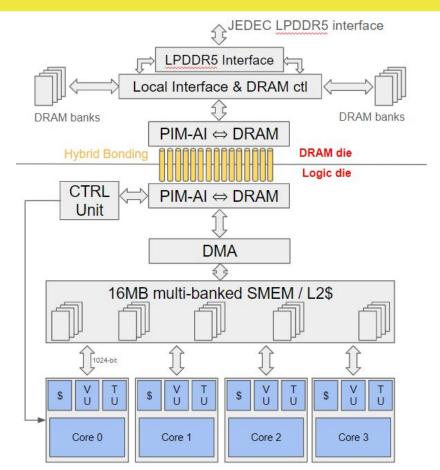
## **UPMEM PIM LLM structural benefits for beating SOCs with NPUs**

#### **UPMEM PIM AI chip specs for smartphones**

• PIM orchestration IP

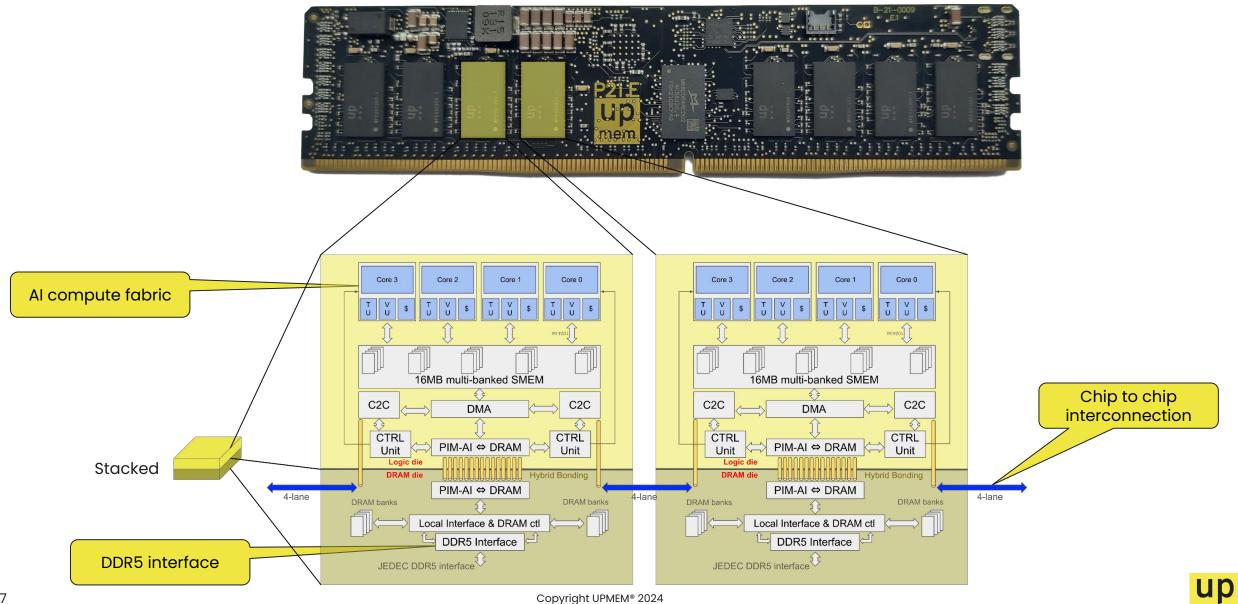
4/17

- Al compute fabric with RISCV core, Tensor unit (5/8 TFLOPS), Vector unit....
- 2GB DRAM LPDDR5 / DDR5



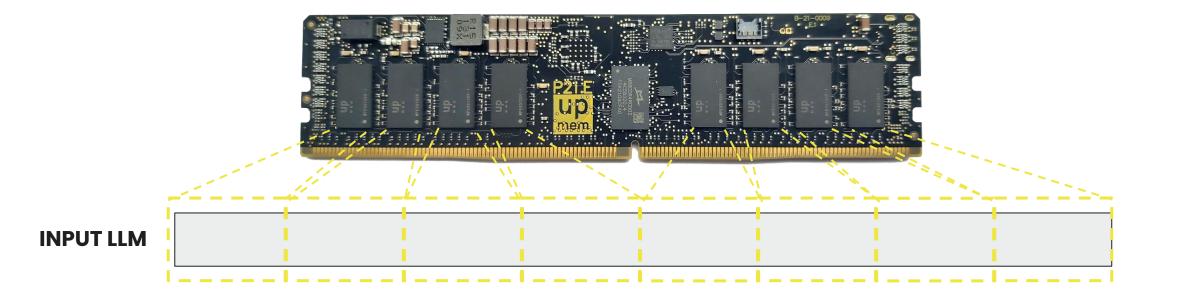
- PIM AI architecture benefits vs. current SOC
  - Much higher DRAM bandwidth for memory bound LLMs
    - 100GB/s per 2GB DRAM
      - Several x more than when accessing through LPDDR Memory controller
  - **Much lower energy cost per bit** on most of data transfers occurring during generation
    - IpJ/bit
  - Much better performance, energy efficiency & TCO
  - UPMEM PIM chip: 2GB 5 TFLOPS FP16
    - Can be associated with several PIM chips
    - Allows standard DRAM mode or PIM-DRAM mode
- While requiring **no change in the SOC**
- Making UPMEM PIM the enabler of GenAI (LLMs) on smartphones

## PIM-AI chip architecture overview (for cloud)

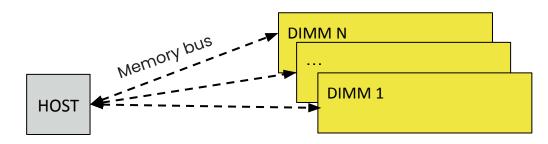


mem

## PIM-AI chip architecture overview (for cloud) II



- INPUT of LLM is used by all chips when applying tensor parallelism
- Chip interconnect allow faster communication
   HOST <-> DIMM
- Operations using a single DIMM do not need to synchronize with HOST



Synchronization between PIM-AI DIMMs and multiple PIM-AI chips are required to go through HOST





## **Benchmark methodology**

Copyright UPMEM<sup>®</sup> 2024

## LLM models decoded

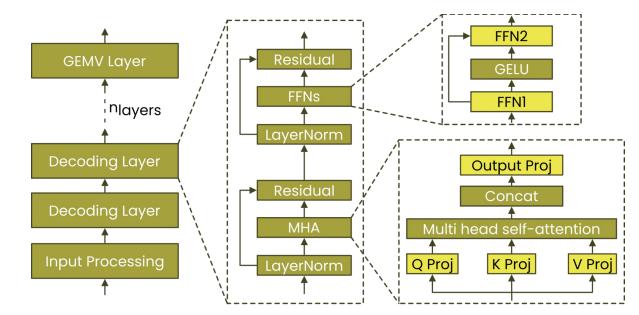
LLM execution mainly consist in two steps (assuming KV cache)

#### • ENCODING

- Done a **single time**
- Input is issued from the prompt
  - Typically a few hundred rows : matrix
- The memory bandwidth is not that much critical
- Compute performance matters
  - Llama-2-7B model encoding time
    - For 64 tokens
      - 8.290s @ 102.4 GFLOPs
      - 0.210s @ 5.0 TFLOPs

#### • DECODING

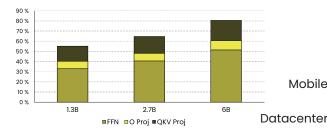
- Done **many times** 
  - One time for each new generated token
- Input is a single row : **vector**
- The memory bandwidth is critical
  - tokens/s ~ memory\_bandwidth / model\_size
- Compute performance does not matter



Layers consisting of GEMM during the encoding phase and GEMV during the decoding phase

Introducing Real-world HBM-PIM Powered System for Memory-bound Applications - Samsung Electronics DRAM Design Team

#### GEMV portion based on GPU Profiling Results



| Model Name            | $n_{\rm params}$ | $n_{\rm layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{ m head}$ |
|-----------------------|------------------|------------------|----------------|----------------|---------------|
| GPT-3 Small           | 125M             | 12               | 768            | 12             | 64            |
| GPT-3 Medium          | 350M             | 24               | 1024           | 16             | 64            |
| GPT-3 Large           | 760M             | 24               | 1536           | 16             | 96            |
| GPT-3 XL              | 1.3B             | 24               | 2048           | 24             | 128           |
| GPT-3 2.7B            | 2.7B             | 32               | 2560           | 32             | 80            |
| GPT-3 6.7B            | 6.7B             | 32               | 4096           | 32             | 128           |
| GPT-3 13B             | 13.0B            | 40               | 5140           | 40             | 128           |
| GPT-3 175B or "GPT-3" | 175.0B           | 96               | 12288          | 96             | 128           |

Sizes, architectures and parameters of the GPT-3 models

As the model size increases, the linear layer O(H2 ) overwhelms attention layer O(HL) \*H is hidden dimension, L is sequence length



## **UPMEM LLM exploration tools and methodology**

#### • UPMEM LLM simulator description

- Standard Pytorch framework running on x86
- Standard LLM models (sourced from Hugging Face)
- Supporting any accelerator profile with key parameters description (bandwidths, energy, ...)
- Providing key performance and profiling metrics

#### • Llama and Mistral models simulation and profiling information

- Multiple targets (UPMEM, Apple, Mediatek, Qualcomm, NVIDIA)
- ENCODING and DECODING information split
- Variable input length and number of generated tokens
- FP16, FP8, INT8, or INT4 operands

#### • Hardware metrics confirmation

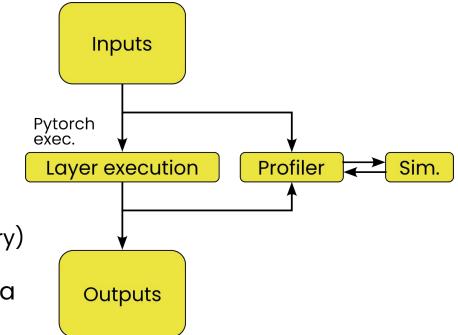
- Cycle accurate simulations on High End RISC-V multicore IP with vector unit
- Several functions exercised (GEMM, GEMV, softmax, ...)



## **UPMEM LLM hardware simulation tools**

#### UPMEM LLM x86 simulator allows to profile execution on different accelerators targets

- The simulator is fed with the accelerator description
  - Bandwidths
    - Host to device (H2D)
    - Device to host (D2H)
    - Main memory to AI logic
  - Compute performance
  - Energy for each of these metrics
- The simulator provides simulated metrics to the profiler
  - Sizes of the data for each layer
  - Dataflows (host to device, device to host, internal main memory)
- At the end of the execution, the profiler collects profiling data
  - Time and energy for each layer
  - ENCODING performance
  - DECODING performance







## **Evaluation**

Copyright UPMEM<sup>®</sup> 2024

## Mobile accelerator descriptions

| Accelerators                            | Host ⇔ Device |             |        | Main<br>Memory |        | Compute |         | Notes                                                                                                                                                                                                                                                                          |  |
|-----------------------------------------|---------------|-------------|--------|----------------|--------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Accelerators                            | H2D<br>GB/S   | D2H<br>GB/s | pJ/bit | BW<br>GB/s     | pJ/bit | TFLOPS  | pJ/flop | DECODING energy 10X higher than on-chip DRAM                                                                                                                                                                                                                                   |  |
| <b>Apple</b><br>A17 pro                 | 51.2          | 51.2        | 20     | 51.2           | 20     | 4.3     | 0.4     | Pushing adoption of low precision datatypes (int4)<br><b>Qualcomm</b> : "Low-bit integer precision is essential for<br>power-efficient inference."                                                                                                                             |  |
| <b>Qualcomm</b><br>Snapdragon 8<br>GEN3 | 77            | 77          | 10     | 77             | 10     | 4.73    | 0.4     | LPDDR interface will limit AI effective bandwidth<br>Shared by all the AP processes                                                                                                                                                                                            |  |
| Mediatek<br>Dimensity 9300              | 77            | 77          | 10     | 77             | 10     | 6       | 0.4     | - Figures per system                                                                                                                                                                                                                                                           |  |
| Samsung<br>LPDDR5 PIM                   | 12.8          | 12.8        | 20     | 102.4          | 0.95   | 0.1024  | 0.8     | On chip standalone processing is IMPOSSIBLE<br>Not general purpose processing<br>Poor algorithms flexibility & datatypes support<br>Very heavy scheduling from host, and energy waste<br>DECODING only<br>Multiple chips can be grouped together to increase<br>BW/performance |  |
| <b>upmem</b><br>PIM-AI (1 chip)         | 12.8          | 12.8        | 20     | 102.4          | 0.95   | 5       | 0.4     | Multiple chips can be grouped together to increase<br>BW/performance                                                                                                                                                                                                           |  |

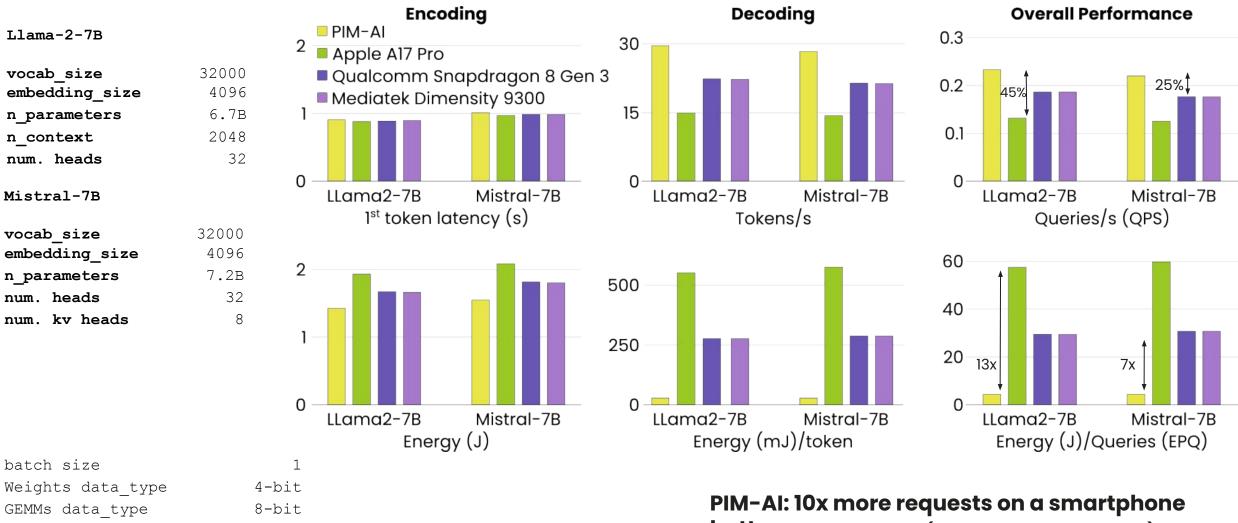


up

mem

## **Mobile simulations**

#### Inference of 1000 tokens in / 100 tokens out



**battery on average** (only 1000 requests for SoC)

Activations data type

16-bit



## **Cloud accelerator descriptions**

- DGX-H100 server is 8U:
  - 8xH100 GPUs
  - 640 GB of HBM
- PIM-AI server is 2U with:
  - 24 PIM-AI DIMMs, each DIMM with:
    - 16 PIM-AI chips with 8 TFLOPS
    - 768 GB of PIM-AI
  - 8 legacy DIMMs
- Next comparisons are between 1 DGX-H100 server and 4x PIM-AI server (same rack occupancy)

| Accelerators                       | Host ⇔ Device |             |         | Main Memory |        | Compute |         |
|------------------------------------|---------------|-------------|---------|-------------|--------|---------|---------|
|                                    | H2D<br>GB/S   | D2H<br>GB/s | pJ/bit  | BW<br>TB/s  | pJ/bit | TFLOPS  | pJ/flop |
| <b>NVIDIA</b><br>DGX-H100 (8xH100) | 450           | 450         | 280/40  | 26.8        | 7      | 7916    | 0.5     |
| <b>upmem</b><br>PIM-AI (1 server)  | 22            | 528         | 1920/50 | 39.3        | 0.95   | 3072    | 0.5     |

Includes interconnect communication between GPUs and DIMMs when broadcasting input (modelling 8 NVIDIA switches)

up

mem

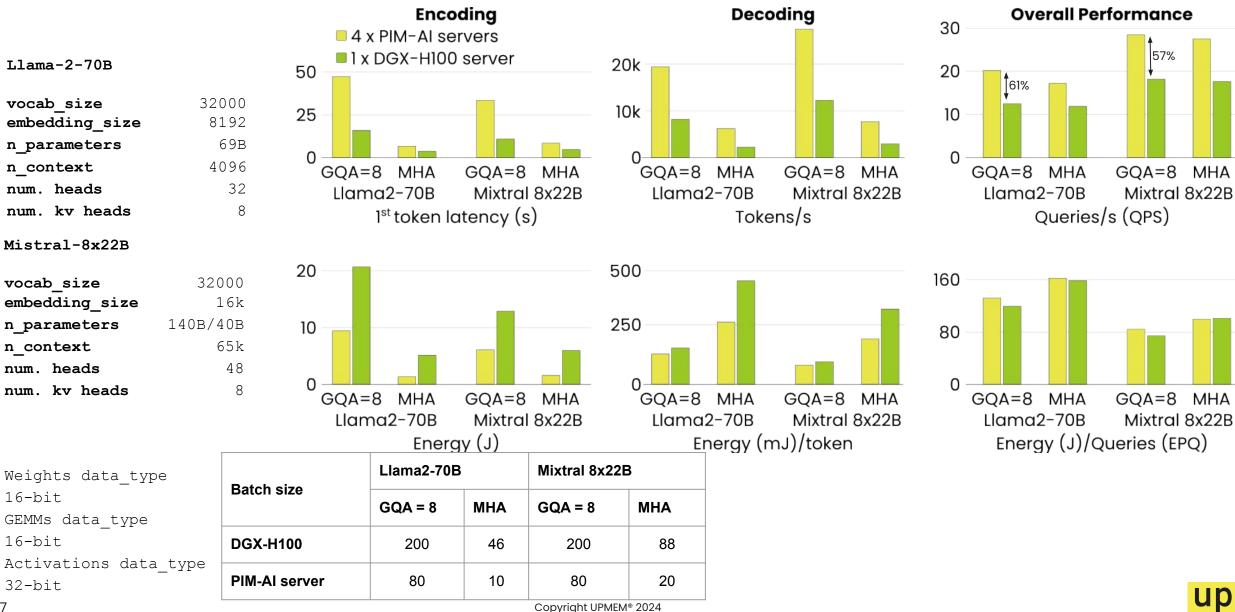


**UPMEM PIM AI - Evaluation** 

### **Cloud simulations**

#### Inference of 1000 tokens in / 100 tokens out

mem



## Conclusions

- RISC-V IP with AI capabilities seamlessly integrated in LPDDR5 / DDR5 memory chips
  - No memory controller changes,
  - No memory PHY changes,
  - Up to 8 TFLOPs,
  - less than 1pJ/bit when accessing main memory
- Hardware evaluation shows:
  - Total cost of ownership per QPS can be improved up to 6.94x for cloud scenarios,
  - up to 49.6% better tokens/second in mobile scenarios,
  - energy efficiency per token improved from 10x to 20x in mobile scenarios
- PyTorch LLM simulator to be open sourced
- QEMU / gem5 simulator to be developed





## **Useful links**

- <u>Website</u>
- <u>Resource page</u>
- <u>Github</u>
- <u>SDK</u>

## Thank you

#### Cristobal Ortega, CPU Architect

cortega@upmem.com



# Backup

Copyright UPMEM<sup>®</sup> 2024

### Performance drivers of HW solutions for LLM on mobile

|                                      | Main memory<br>(GENERATION)    |                    | Compute<br>(SUMMARIZATION) |                                                      | Notes                                                                                                                                                                                                                                     |  |  |
|--------------------------------------|--------------------------------|--------------------|----------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                      | Bandwidth<br><sub>GB</sub> / s | Energy<br>pJ / bit | 16-bit<br>TFLOPs           | MAX<br>TOPS                                          | Notes                                                                                                                                                                                                                                     |  |  |
| Apple<br>Al7 pro                     | 51.2<br>LPDDR5 (8GB)           | > 20               | 4.3<br>(GPU)               | 35<br>(ane)                                          | DECODING energy 10X higher than on-chip DRAM<br>Pushing adoption of low precision datatypes (int4)                                                                                                                                        |  |  |
| <b>Qualcomm</b><br>Snapdragon 8 GEN3 |                                | > 10               | 4.73<br>(gpu a750)         | 34<br>(Hexagon)                                      | Qualcomm : "Low-bit integer precision is essential for power-efficient inference."         LPDDR interface will limit AI effective bandwidth                                                                                              |  |  |
| Mediatek77Dimensity 9300LPDDR5T      |                                | 6<br>(gpu g720)    | 33<br>(apu 790)            | Shared by all the AP processes<br>Figures per system |                                                                                                                                                                                                                                           |  |  |
| Samsung<br>LPDDR5 PIM                | 102.4<br>internal (2GB)        | <1                 | 0.1024                     | 0.2048                                               | On chip standalone processing is IMPOSSIBLE<br>Not general purpose processing<br>Poor algorithms flexibility & datatypes support<br>Very heavy scheduling from host, and energy waste<br>DECODING only<br>Per chip = x4 for 4 LPDDR chips |  |  |
| <b>UPMEM</b><br>PIM-AI (1 chip)      | <b>102.4</b><br>internal (2GB) |                    | 8 (tpu)<br>0.256 (vpu)     | 32 (tpu)<br>0.512 (vpu)                              | Per chip => x4 for 4 LPDDR chips                                                                                                                                                                                                          |  |  |

## **Example: GPT-3**

 $n_heads = 96$ 

#### Parallelizing GPT-3 into 6 DIMMs:

n\_context = 2048 rows

Tensor input representation of GPT-3: [num\_batches, num\_tokens, embedding] num\_batches: different requests to the model num\_tokens: tokens within a request, usually padded to the longest request/batch embedding: num. features representing a token **Operations in WO:** num\_batches GEMMs of: [num\_tokens, embedding] x [embedding, embedding] Sync points Hidden\_size / dmodel / embedding size = 12288 with CPU 12 288 204 12 288 12 288

