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PIM-AI chip architecture overview
UPMEM PIM AI - Hardware architecture
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UPMEM PIM LLM structural benefits for beating SOCs with NPUs

● PIM AI architecture benefits vs. current SOC 
○ Much higher DRAM bandwidth for memory bound LLMs

■ 100GB/s per 2GB DRAM 
● Several x more than when accessing through 

LPDDR Memory controller
○ Much lower energy cost per bit on most of data 

transfers occurring during generation
■ 1pJ/bit

○ Much better performance, energy efficiency & TCO 
○ UPMEM PIM chip: 2GB 5 TFLOPS FP16

■ Can be associated with several PIM chips
■ Allows standard DRAM mode or PIM-DRAM mode

● While requiring no change in the SOC

● Making UPMEM PIM the enabler of GenAI (LLMs) on 
smartphones

UPMEM PIM AI chip specs for smartphones
● PIM orchestration IP
● AI compute fabric with RISCV core, 

Tensor unit (5/8 TFLOPS), Vector unit….
● 2GB DRAM LPDDR5 / DDR5

UPMEM PIM AI - Hardware architecture



5/17 Copyright UPMEM® 2024

PIM-AI chip architecture overview (for cloud)
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UPMEM PIM AI - Hardware architecture
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PIM-AI chip architecture overview (for cloud) II

● INPUT of LLM is used by all chips when applying 
tensor parallelism

● Chip interconnect allow faster communication 
HOST <-> DIMM

● Operations using a single DIMM do not need to 
synchronize with HOST

INPUT LLM

DIMM N

DIMM 1

Synchronization between PIM-AI DIMMs and multiple 
PIM-AI chips are required to go through HOST

HOST

…
Memory bus

UPMEM PIM AI - Hardware architecture
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LLM models decoded 
UPMEM PIM AI - Benchmark methodology

Sizes, architectures and parameters of the GPT-3 models
As the model size increases, the 
linear layer O(H2 ) overwhelms 

attention layer O(HL)
*H is hidden dimension, L is sequence length

Introducing Real-world HBM-PIM Powered System for Memory-bound Applications - Samsung Electronics DRAM Design Team

Mobile

Datacenter

LLM execution mainly consist in two steps
 (assuming KV cache)

● ENCODING
○ Done a single time
○ Input is issued from the prompt

■ Typically a few hundred rows : matrix
○ The memory bandwidth is not that much critical
○ Compute performance matters

■ Llama-2-7B model encoding time 
● For 64 tokens

8.290s @ 102.4 GFLOPs
0.210s @   5.0 TFLOPs

● DECODING
○ Done many times 

■ One time for each new generated token
○ Input is a single row : vector
○ The memory bandwidth is critical

tokens/s ~ memory_bandwidth / model_size
○ Compute performance does not matter

https://events.safari.ethz.ch/isca-pim-tutorial/lib/exe/fetch.php?media=introducing_real-world_hbm-pim_powered_system_for_memory-bound_applications.pdf
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UPMEM LLM exploration tools and methodology
● UPMEM LLM simulator description

○ Standard Pytorch framework running on x86
○ Standard LLM models (sourced from Hugging Face)
○ Supporting any accelerator profile with key parameters description (bandwidths, energy, …)
○ Providing key performance and profiling metrics

● Llama and Mistral models simulation and profiling information
○ Multiple targets (UPMEM, Apple, Mediatek, Qualcomm, NVIDIA)
○ ENCODING and DECODING information split
○ Variable input length and number of generated tokens
○ FP16, FP8, INT8, or INT4 operands

● Hardware metrics confirmation
○ Cycle accurate simulations on High End RISC-V multicore IP with vector unit
○ Several functions exercised (GEMM, GEMV, softmax, …)

UPMEM PIM AI - Benchmark methodology
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UPMEM LLM hardware simulation tools

UPMEM LLM x86 simulator allows to profile execution on different accelerators targets 
• The simulator is fed with the accelerator description

• Bandwidths
• Host to device (H2D)
• Device to host (D2H)
• Main memory to AI logic

• Compute performance
• Energy for each of these metrics

• The simulator provides simulated metrics to the profiler
• Sizes of the data for each layer
• Dataflows (host to device, device to host, internal main memory)

• At the end of the execution, the profiler collects profiling data
• Time and energy for each layer
• ENCODING performance
• DECODING performance

UPMEM PIM AI - Benchmark methodology



Evaluation

Copyright UPMEM® 2024



12/17 Copyright UPMEM® 2024

Mobile accelerator descriptions

Accelerators
Host ⇔ Device Main 

Memory Compute Notes

H2D
GB/S

D2H
GB/s pJ/bit BW

GB/s pJ/bit TFLOPS pJ/flop
DECODING energy 10X higher than on-chip DRAM

Pushing adoption of low precision datatypes (int4)
Qualcomm : “Low-bit integer precision is essential for 
power-efficient inference.”

LPDDR interface will limit AI effective bandwidth
Shared by all the AP processes

Figures per system

Apple
A17 pro 51.2 51.2 20 51.2 20 4.3 0.4

Qualcomm 
Snapdragon 8 
GEN3

77 77 10 77 10 4.73 0.4

Mediatek
Dimensity 9300 77 77 10 77 10 6 0.4

Samsung
LPDDR5 PIM

12.8 12.8 20 102.4 0.95 0.1024 0.8

On chip standalone processing is IMPOSSIBLE
Not general purpose processing
Poor algorithms flexibility & datatypes support

Very heavy scheduling from host, and energy waste
DECODING only

Multiple chips can be grouped together to increase 
BW/performance

upmem
PIM-AI (1 chip) 12.8 12.8 20 102.4 0.95 5 0.4 Multiple chips can be grouped together to increase 

BW/performance

UPMEM PIM AI - Evaluation
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Mobile simulations

Llama-2-7B

vocab_size 32000
embedding_size   4096
n_parameters         6.7B
n_context  2048
num. heads    32

batch size          1
Weights data_type  4-bit
GEMMs data_type  8-bit
Activations data_type 16-bit

Mistral-7B

vocab_size 32000
embedding_size   4096
n_parameters  7.2B
num. heads    32
num. kv heads     8

Inference of 1000 tokens in / 100 tokens out

UPMEM PIM AI - Evaluation

1 joule = 0.28mWh - smartphone battery ~13Wh / 46 800J

PIM-AI: 10x more requests on a smartphone 
battery on average (only 1000 requests for SoC)

25%

7x

45%

13x
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Cloud accelerator descriptions
• DGX-H100 server is 8U:

• 8xH100 GPUs
• 640 GB of HBM

• PIM-AI server is 2U with:
• 24  PIM-AI DIMMs, each DIMM with:

• 16 PIM-AI chips with 8 TFLOPS
• 768 GB of PIM-AI

• 8 legacy DIMMs
• Next comparisons are between 1 DGX-H100 server and 4x PIM-AI 

server (same rack occupancy)

Accelerators
Host ⇔ Device Main Memory Compute

H2D
GB/S

D2H
GB/s pJ/bit BW

TB/s pJ/bit TFLOPS pJ/flop

NVIDIA
DGX-H100 (8xH100) 450 450 280/40 26.8 7 7916 0.5

upmem
PIM-AI (1 server) 22 528 1920/50 39.3 0.95 3072 0.5

Includes interconnect communication 
between GPUs and DIMMs when 
broadcasting input
(modelling 8 NVIDIA switches)

UPMEM PIM AI - Evaluation
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Cloud simulations

Llama-2-70B

vocab_size 32000
embedding_size   8192
n_parameters   69B
n_context  4096
num. heads    32
num. kv heads     8

Weights data_type  
16-bit
GEMMs data_type  
16-bit
Activations data_type
32-bit

Mistral-8x22B

vocab_size 32000
embedding_size    16k
n_parameters   140B/40B
n_context   65k
num. heads    48
num. kv heads     8

Batch size
Llama2-70B Mixtral 8x22B

GQA = 8 MHA GQA = 8 MHA

DGX-H100 200 46 200 88

PIM-AI server 80 10 80 20

Inference of 1000 tokens in / 100 tokens out

UPMEM PIM AI - Evaluation

61%

57%
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UPMEM PIM AI - Conclusions

Conclusions
● RISC-V IP with AI capabilities seamlessly integrated in LPDDR5 / DDR5 memory chips

○ No memory controller changes,
○ No memory PHY changes,
○ Up to 8 TFLOPs,
○ less  than 1pJ/bit when accessing main memory

● Hardware evaluation shows:
○ Total cost of ownership per QPS can be improved up to 6.94x for cloud scenarios,
○ up to 49.6% better tokens/second in mobile scenarios,
○ energy efficiency per token improved from 10x to 20x in mobile scenarios

● PyTorch LLM simulator to be open sourced

● QEMU / gem5 simulator to be developed



Thank you
Cristobal Ortega, CPU Architect
cortega@upmem.com
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Useful links
• Website
• Resource page
• Github
• SDK

mailto:cortega@upmem.com
https://www.upmem.com/
https://www.upmem.com/ressources/
https://github.com/upmem
https://sdk.upmem.com/
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Performance drivers of HW solutions for LLM on mobile

Main memory
(GENERATION)

Compute
(SUMMARIZATION)

Notes
Bandwidth

GB / s
Energy
pJ / bit

16-bit
TFLOPs

MAX
TOPS

Apple
A17 pro

51.2
LPDDR5 (8GB) > 20 4.3

(GPU)
35

(ANE)
DECODING energy 10X higher than on-chip DRAM

Pushing adoption of low precision datatypes (int4)
Qualcomm : “Low-bit integer precision is essential for 
power-efficient inference.”

LPDDR interface will limit AI effective bandwidth
Shared by all the AP processes

Figures per system

Qualcomm 
Snapdragon 8 GEN3

77
LPDDR5X

> 10

4.73
(GPU A750)

34
(Hexagon)

Mediatek 
Dimensity 9300

77
LPDDR5T

6
(GPU G720)

33
(APU 790)

Samsung
LPDDR5 PIM

102.4
internal (2GB)

< 1
0.1024 0.2048

On chip standalone processing is IMPOSSIBLE
Not general purpose processing
Poor algorithms flexibility & datatypes support

Very heavy scheduling from host, and energy waste
DECODING only
Per chip = x4 for 4 LPDDR chips

UPMEM
PIM-AI (1 chip)

102.4
internal (2GB)

8 (TPU)
0.256 (VPU)

32 (TPU)
0.512 (VPU)

Per chip => x4 for 4 LPDDR chips

UPMEM PIM AI - Benchmark methodology



Example: GPT-3

Parallelizing GPT-3 into 6 DIMMs:
 n_context = 2048 rows
 n_heads = 96
 Hidden_size / dmodel  / embedding size = 12288

Each head of the MHA could be computed
by 1 chip → 96 chips → 6 DIMMs

Data parallelism across 96 chips

Sync points 
with CPU

Tensor input representation of GPT-3:
[num_batches, num_tokens, embedding]

 num_batches: different requests to the model
 num_tokens: tokens within a request, usually padded to the longest 

request/batch
 embedding: num. features representing a token

 Operations in WO:
num_batches GEMMs of:
[num_tokens, embedding] x [embedding, embedding]


